Dependence of Cathepsin L –induced Coronary Endothelial Dysfunction upon Activation of NAD(P)H Oxidase

[1]  Si Jin,et al.  Lysosomal Targeting and Trafficking of Acid Sphingomyelinase to Lipid Raft Platforms in Coronary Endothelial Cells , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[2]  Si Jin,et al.  Local production of O2- by NAD(P)H oxidase in the sarcoplasmic reticulum of coronary arterial myocytes: cADPR-mediated Ca2+ regulation. , 2008, Cellular signalling.

[3]  Yang Zhang,et al.  Critical Role of Lipid Raft Redox Signaling Platforms in Endostatin-Induced Coronary Endothelial Dysfunction , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[4]  Christoph Peters,et al.  Cathepsin L Deficiency Reduces Diet-Induced Atherosclerosis in Low-Density Lipoprotein Receptor-Knockout Mice , 2007, Circulation.

[5]  Pin-Lan Li,et al.  Production of NAADP and its role in Ca2+ mobilization associated with lysosomes in coronary arterial myocytes. , 2006, American journal of physiology. Heart and circulatory physiology.

[6]  F. Sellke,et al.  Hypercholesterolemia impairs the myocardial angiogenic response in a swine model of chronic ischemia: role of endostatin and oxidative stress. , 2006, The Annals of thoracic surgery.

[7]  E. Gulbins,et al.  Lipid Raft Clustering and Redox Signaling Platform Formation in Coronary Arterial Endothelial Cells , 2006, Hypertension.

[8]  K. Moulton,et al.  Endostatin binds biglycan and LDL and interferes with LDL retention to the subendothelial matrix during atherosclerosiss⃞s⃞ The online version of this article (available at http://www.jlr.org) contains an additional figure Published, JLR Papers in Press, July 1, 2005. DOI 10.1194/jlr.M500241-JLR200 , 2005, Journal of Lipid Research.

[9]  W. Campbell,et al.  Endostatin uncouples NO and Ca2+ response to bradykinin through enhanced O2*- production in the intact coronary endothelium. , 2005, American journal of physiology. Heart and circulatory physiology.

[10]  D. Zurakowski,et al.  Loss of Collagen XVIII Enhances Neovascularization and Vascular Permeability in Atherosclerosis , 2004, Circulation.

[11]  Pin-Lan Li,et al.  Enhanced production and action of cyclic ADP-ribose during oxidative stress in small bovine coronary arterial smooth muscle. , 2004, Microvascular research.

[12]  Tiansen Li,et al.  Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function , 2004, The EMBO journal.

[13]  M. Bogyo,et al.  Cathepsin L and Arg/Lys aminopeptidase: a distinct prohormone processing pathway for the biosynthesis of peptide neurotransmitters and hormones , 2004, Biological chemistry.

[14]  F. Yi,et al.  Simultaneous in situ monitoring of intracellular Ca2+ and NO in endothelium of coronary arteries. , 2002, American journal of physiology. Heart and circulatory physiology.

[15]  E. Chavakis,et al.  Dephosphorylation of endothelial nitric oxide synthase contributes to the anti‐angiogenic effects of endostatin , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  J. Falck,et al.  14,15-Dihydroxyeicosatrienoic acid relaxes bovine coronary arteries by activation of K(Ca) channels. , 2002, American journal of physiology. Heart and circulatory physiology.

[17]  J. Kos,et al.  Serum concentration and circadian profiles of cathepsins B, H and L, and their inhibitors, stefins A and B, in asthma. , 2001, Clinica chimica acta; international journal of clinical chemistry.

[18]  D. Harrison,et al.  Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. , 2000, Circulation research.

[19]  H. Ploegh,et al.  Secreted cathepsin L generates endostatin from collagen XVIII , 2000, The EMBO journal.

[20]  W. Campbell,et al.  11,12-Epoxyeicosatrienoic acid stimulates endogenous mono-ADP-ribosylation in bovine coronary arterial smooth muscle. , 1999, Circulation research.

[21]  V. Sukhatme,et al.  Cloning, Expression, andin VitroActivity of Human Endostatin , 1999 .

[22]  V. Sukhatme,et al.  Endostatin Induces Endothelial Cell Apoptosis* , 1999, The Journal of Biological Chemistry.

[23]  Sheila J. Jones,et al.  Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Timpl,et al.  Structure, function and tissue forms of the C‐terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin , 1998, The EMBO journal.

[25]  S. Kawahara,et al.  Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. , 1998, Analytical chemistry.

[26]  A. Rudensky,et al.  Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. , 1998, Science.

[27]  Thomas Boehm,et al.  Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance , 1997, Nature.

[28]  William Arbuthnot Sir Lane,et al.  Endostatin: An Endogenous Inhibitor of Angiogenesis and Tumor Growth , 1997, Cell.

[29]  M. Seldin,et al.  Cloning of cDNA and genomic DNA encoding human type XVIII collagen and localization of the alpha 1(XVIII) collagen gene to mouse chromosome 10 and human chromosome 21. , 1994, Genomics.

[30]  L. Liotta,et al.  Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation , 1991, Cell.

[31]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[32]  W. Campbell,et al.  Inhibition of cADP-ribose formation produces vasodilation in bovine coronary arteries. , 2000, Hypertension.