Geometries of the Group PSL(2,11)

We determine all residually weakly primitive flag-transitive geometries for the groups PSL(2,11) and PGL(2,11). For the first of these we prove the existence by simple constructions while uniqueness, namely the fact that the lists are complete, relies on MAGMA programs. A central role is played by the subgroups Alt(5) in PSL(2,11). The highest rank of a geometry in our lists is four. Our work is related to various ‘atlases’ of coset geometries.