AN UPWINDING MIXED FINITE ELEMENT METHOD FOR A MEAN FIELD MODEL OF SUPERCONDUCTING VORTICES

In this paper, we construct a combined upwinding and mixed finite element method for the numerical solution of a two-dimensional mean field model of superconducting vortices. An advantage of our method is that it works for any unstructured regular triangulation. A simple convergence analysis is given without resorting to the discrete maximum principle. Numerical examples are also presented.

[1]  Qiang Du,et al.  High-Kappa Limits of the Time-Dependent Ginzburg-Landau Model , 1996, SIAM J. Appl. Math..

[2]  Peterson,et al.  Computational simulation of type-II superconductivity including pinning phenomena. , 1995, Physical review. B, Condensed matter.

[3]  R. Temam Navier-Stokes Equations , 1977 .

[4]  Leonid Prigozhin,et al.  The Bean Model in Superconductivity , 1996 .

[5]  Leonid Prigozhin,et al.  On the Bean critical-state model in superconductivity , 1996, European Journal of Applied Mathematics.

[6]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[7]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[10]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[11]  S. Jonathan Chapman,et al.  Motion of Vortices in Type II Superconductors , 1995, SIAM J. Appl. Math..

[12]  Zhiming Chen,et al.  Adaptive Galerkin Methods with Error Control for a Dynamical Ginzburg-Landau Model in Superconductivity , 2000, SIAM J. Numer. Anal..

[13]  Qiang Du,et al.  Analysis and computation of a mean-field model for superconductivity , 1999, Numerische Mathematik.

[14]  E Weinan,et al.  Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .

[15]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[16]  T. Svobodny,et al.  Evolution of mixed-state regions in type-II superconductors , 1998 .

[17]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[18]  P. Lesaint Finite element methods for the transport equation , 1974 .

[19]  S. Jonathan A MEAN-FIELD MODEL OF SUPERCONDUCTING VORTICES IN THREE DIMENSIONS* , 1995 .

[20]  Jacob Rubinstein,et al.  A mean-field model of superconducting vortices , 1996, European Journal of Applied Mathematics.