Discovery of stable skyrmionic state in ferroelectric nanocomposites
暂无分享,去创建一个
L. Bellaiche | I. Kornev | L. Bellaiche | Y. Nahas | S. Prokhorenko | L. Louis | Z. Gui | S. Prokhorenko | I. Kornev | Y. Nahas | L. Louis | Z. Gui
[1] E. Artacho,et al. Topology of the polarization field in ferroelectric nanowires from first principles , 2009, 0908.3617.
[2] N. Setter,et al. Closed-circuit domain quadruplets in BaTiO3 nanorods embedded in a SrTiO3 film , 2014, 1401.1470.
[3] G. Finocchio,et al. A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.
[4] P. Kužel,et al. Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal BaTiO3. , 2008, Physical review letters.
[5] Laura E. Walizer,et al. Finite-temperature properties of ( Ba , Sr ) Ti O 3 systems from atomistic simulations , 2006 .
[6] J. Scott. Novel geometric ordering of ferroelectricity , 2005 .
[7] S. Fusil,et al. Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[8] T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .
[9] P. Böni,et al. Skyrmion Lattice in a Chiral Magnet , 2009, Science.
[10] D. Vanderbilt,et al. Phase transitions in BaTiO 3 from first principles , 1994 .
[11] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[12] L. Bellaiche,et al. Unusual phase transitions in ferroelectric nanodisks and nanorods , 2004, Nature.
[13] M. Alexe,et al. Vortex ferroelectric domains , 2008 .
[14] D. Wu,et al. Creating an artificial two-dimensional Skyrmion crystal by nanopatterning. , 2013, Physical review letters.
[15] D. Vanderbilt,et al. Finite-Temperature Properties of Pb Zr 1 2 x Ti x O 3 Alloys from First Principles , 2000 .
[16] J. Grollier,et al. Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. , 2013, ACS nano.
[17] Teruo Ono,et al. Electrical switching of the vortex core in a magnetic disk. , 2007, Nature materials.
[18] Laura E. Walizer,et al. Geometric frustration in compositionally modulated ferroelectrics , 2011, Nature.
[19] L. Bellaiche,et al. Phase diagrams ofBaTiO3∕SrTiO3superlattices from first principles , 2007 .
[20] Properties of ferroelectric nanodots embedded in a polarizable medium: atomistic simulations. , 2006, Physical review letters.
[21] N. D. Mermin,et al. The topological theory of defects in ordered media , 1979 .
[22] Ivan Naumov,et al. Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. , 2008, Physical review letters.
[23] A. Fert,et al. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.
[24] M. Ezawa. Giant Skyrmions stabilized by dipole-dipole interactions in thin ferromagnetic films. , 2010, Physical review letters.
[25] Y. Tokura,et al. Possible skyrmion-lattice ground state in the B20 chiral-lattice magnet MnGe as seen via small-angle neutron scattering , 2012 .
[26] I. Ponomareva,et al. Microscopic insight into temperature-graded ferroelectrics. , 2010, Physical Review Letters.
[27] Y. Tokura,et al. Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.
[28] L. Bellaiche,et al. Terahertz dynamics of ferroelectric vortices from first principles , 2014 .
[29] Marin Alexe,et al. Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3 , 2011, Science.
[30] Garcia,et al. Finite-temperature properties of Pb(Zr1-xTi(x))O3 alloys from first principles , 2000, Physical review letters.
[31] A. Malashevich,et al. Natural optical activity and its control by electric field in electrotoroidic systems , 2013, 1306.2189.
[32] Y. Tokura,et al. Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.
[33] I. Kornev,et al. Novel complex phenomena in ferroelectric nanocomposites , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[34] R. Ramesh,et al. Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures , 2010 .
[35] D. Vanderbilt,et al. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites , 1999, cond-mat/9908364.
[36] Rabe,et al. First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. , 1995, Physical review. B, Condensed matter.
[37] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .
[38] I. Kornev,et al. Phase transitions in epitaxial (-110) BiFeO3 films from first principles. , 2011, Physical review letters.
[39] Rabe,et al. Phase transitions in BaTiO3 from first principles. , 1994, Physical review letters.
[40] C. Pfleiderer,et al. Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.
[41] Anna N. Morozovska,et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 , 2011, Nature Physics.
[42] L. E. Cross,et al. Connectivity and piezoelectric-pyroelectric composites , 1978 .
[43] S. Heinze,et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .
[44] H. Kawamura,et al. Multiple-q states and the Skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. , 2011, Physical review letters.
[45] B. Berg,et al. Definition and statistical distributions of a topological number in the lattice O(3) σ-model , 1981 .
[46] A. Gruverman,et al. Mesoscale flux-closure domain formation in single-crystal , 2011, Nature communications.
[47] Acknowledgements , 1992, Experimental Gerontology.