Discovery of stable skyrmionic state in ferroelectric nanocomposites

Non-coplanar swirling field textures, or skyrmions, are now widely recognized as objects of both fundamental interest and technological relevance. So far, skyrmions were amply investigated in magnets, where due to the presence of chiral interactions, these topological objects were found to be intrinsically stabilized. Ferroelectrics on the other hand, lacking such chiral interactions, were somewhat left aside in this quest. Here we demonstrate, via the use of a first-principles-based framework, that skyrmionic configuration of polarization can be extrinsically stabilized in ferroelectric nanocomposites. The interplay between the considered confined geometry and the dipolar interaction underlying the ferroelectric phase instability induces skyrmionic configurations. The topological structure of the obtained electrical skyrmion can be mapped onto the topology of domain-wall junctions. Furthermore, the stabilized electrical skyrmion can be as small as a few nanometers, thus revealing prospective skyrmion-based applications of ferroelectric nanocomposites.

[1]  E. Artacho,et al.  Topology of the polarization field in ferroelectric nanowires from first principles , 2009, 0908.3617.

[2]  N. Setter,et al.  Closed-circuit domain quadruplets in BaTiO3 nanorods embedded in a SrTiO3 film , 2014, 1401.1470.

[3]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[4]  P. Kužel,et al.  Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal BaTiO3. , 2008, Physical review letters.

[5]  Laura E. Walizer,et al.  Finite-temperature properties of ( Ba , Sr ) Ti O 3 systems from atomistic simulations , 2006 .

[6]  J. Scott Novel geometric ordering of ferroelectricity , 2005 .

[7]  S. Fusil,et al.  Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[9]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[10]  D. Vanderbilt,et al.  Phase transitions in BaTiO 3 from first principles , 1994 .

[11]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[12]  L. Bellaiche,et al.  Unusual phase transitions in ferroelectric nanodisks and nanorods , 2004, Nature.

[13]  M. Alexe,et al.  Vortex ferroelectric domains , 2008 .

[14]  D. Wu,et al.  Creating an artificial two-dimensional Skyrmion crystal by nanopatterning. , 2013, Physical review letters.

[15]  D. Vanderbilt,et al.  Finite-Temperature Properties of Pb Zr 1 2 x Ti x O 3 Alloys from First Principles , 2000 .

[16]  J. Grollier,et al.  Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. , 2013, ACS nano.

[17]  Teruo Ono,et al.  Electrical switching of the vortex core in a magnetic disk. , 2007, Nature materials.

[18]  Laura E. Walizer,et al.  Geometric frustration in compositionally modulated ferroelectrics , 2011, Nature.

[19]  L. Bellaiche,et al.  Phase diagrams ofBaTiO3∕SrTiO3superlattices from first principles , 2007 .

[20]  Properties of ferroelectric nanodots embedded in a polarizable medium: atomistic simulations. , 2006, Physical review letters.

[21]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[22]  Ivan Naumov,et al.  Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. , 2008, Physical review letters.

[23]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[24]  M. Ezawa Giant Skyrmions stabilized by dipole-dipole interactions in thin ferromagnetic films. , 2010, Physical review letters.

[25]  Y. Tokura,et al.  Possible skyrmion-lattice ground state in the B20 chiral-lattice magnet MnGe as seen via small-angle neutron scattering , 2012 .

[26]  I. Ponomareva,et al.  Microscopic insight into temperature-graded ferroelectrics. , 2010, Physical Review Letters.

[27]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[28]  L. Bellaiche,et al.  Terahertz dynamics of ferroelectric vortices from first principles , 2014 .

[29]  Marin Alexe,et al.  Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3 , 2011, Science.

[30]  Garcia,et al.  Finite-temperature properties of Pb(Zr1-xTi(x))O3 alloys from first principles , 2000, Physical review letters.

[31]  A. Malashevich,et al.  Natural optical activity and its control by electric field in electrotoroidic systems , 2013, 1306.2189.

[32]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[33]  I. Kornev,et al.  Novel complex phenomena in ferroelectric nanocomposites , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  R. Ramesh,et al.  Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures , 2010 .

[35]  D. Vanderbilt,et al.  Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites , 1999, cond-mat/9908364.

[36]  Rabe,et al.  First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. , 1995, Physical review. B, Condensed matter.

[37]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[38]  I. Kornev,et al.  Phase transitions in epitaxial (-110) BiFeO3 films from first principles. , 2011, Physical review letters.

[39]  Rabe,et al.  Phase transitions in BaTiO3 from first principles. , 1994, Physical review letters.

[40]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[41]  Anna N. Morozovska,et al.  Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 , 2011, Nature Physics.

[42]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[43]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[44]  H. Kawamura,et al.  Multiple-q states and the Skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. , 2011, Physical review letters.

[45]  B. Berg,et al.  Definition and statistical distributions of a topological number in the lattice O(3) σ-model , 1981 .

[46]  A. Gruverman,et al.  Mesoscale flux-closure domain formation in single-crystal , 2011, Nature communications.

[47]  Acknowledgements , 1992, Experimental Gerontology.