A generalized split-window algorithm for retrieving land-surface temperature from space

Proposes a generalized split-window method for retrieving land-surface temperature (LST) from AVHRR and MODIS data. Accurate radiative transfer simulations show that the coefficients in the split-window algorithm for LST must vary with the viewing angle, if the authors are to achieve a LST accuracy of about 1 K for the whole scan swath range (/spl plusmn/55/spl deg/ from nadir) and for the ranges of surface temperature and atmospheric conditions over land, which are much wider than those over oceans. The authors obtain these coefficients from regression analysis of radiative transfer simulations, and they analyze sensitivity and error over wide ranges of surface temperature and emissivity and atmospheric water vapor abundance and temperature. Simulations show that when atmospheric water vapor increases and viewing angle is larger than 45/spl deg/, it is necessary to optimize the split-window method by separating the ranges of the atmospheric water vapor, lower boundary temperature, and the surface temperature into tractable subranges. The atmospheric lower boundary temperature and (vertical) column water vapor values retrieved from HIRS/2 or MODIS atmospheric sounding channels can be used to determine the range for the optimum coefficients of the split-window method. This new algorithm not only retrieves land-surface temperature more accurately, but is also less sensitive to uncertainty in emissivity and to instrument quantization error.

[1]  L. Hanssen Effects of restricting the detector field of view when using integrating spheres. , 1989, Applied optics.

[2]  A.Vidal Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data , 1991 .

[3]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[4]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[5]  Alfred J Prata,et al.  Land surface temperatures derived from the advanced very high resolution radiometer and the along‐track scanning radiometer: 2. Experimental results and validation of AVHRR algorithms , 1994 .

[6]  V. Salomonson,et al.  MODIS: advanced facility instrument for studies of the Earth as a system , 1989 .

[7]  Fujio Kimura,et al.  Estimation of Sensible and Latent Heat Fluxes from Soil Surface Temperature Using a Linear Air-Land Heat Transfer Model , 1994 .

[8]  Yann Kerr,et al.  Inversion of surface parameters from passive microwave measurements over a soybean field , 1993 .

[9]  J. C. Price Estimating surface temperatures from satellite thermal infrared data—A simple formulation for the atmospheric effect☆ , 1983 .

[10]  J. Dozier,et al.  Effects of Temperature-Dependent Molecular Absorption Coefficients on the Thermal Infrared Remote Sensing of the Earth Surface , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[11]  W. G. Rees,et al.  Angular variation of the infrared emissivity of ice and water surfaces , 1992 .

[12]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[13]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[14]  W B Grant,et al.  Water vapor absorption coefficients in the 8-13-microm spectral region: a critical review. , 1990, Applied optics.

[15]  M. Griggs Emissivities of natural surfaces in the 8‐ to 14‐micron spectral region , 1968 .

[16]  F. Palluconi,et al.  The spectral emissivity of prairie and pasture grasses at Konza Prairie, Kansas , 1990 .

[17]  Richard H. Tipping,et al.  The detailed balance requirement and general empirical formalisms for continuum absorption , 1994 .

[18]  Roger Saunders,et al.  Theoretical algorithms for satellite‐derived sea surface temperatures , 1989 .

[19]  G. E. Hunt,et al.  Discrete space theory of radiative transfer I. Fundamentals , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  H. Mannstein,et al.  Surface Energy Budget, Surface Temperature and Thermal Inertia , 1987 .

[21]  Yann Kerr,et al.  Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm , 1992 .

[22]  F. X. Kneizys,et al.  Users Guide to LOWTRAN 7 , 1988 .

[23]  Zhao-Liang Li,et al.  Impact of the atmospheric transmittance and total water vapor content in the algorithms for estimating satellite sea surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..

[24]  John R. Miller,et al.  Measured effects of desert varnish on the mid-infrared spectra of weathered rocks as an aid to TIMS imagery interpretation , 1993, IEEE Trans. Geosci. Remote. Sens..

[25]  E. Njoku,et al.  Passive microwave remote sensing of soil moisture , 1996 .

[26]  José A. Sobrino,et al.  Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5 , 1991 .

[27]  Z. Li,et al.  Towards a local split window method over land surfaces , 1990 .

[28]  M. P. Stoll,et al.  Angular variation of land surface spectral emissivity in the thermal infrared: laboratory investigations on bare soils , 1991 .

[29]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[30]  J. Dozier,et al.  Land-surface temperature measurement from space: physical principles and inverse modeling , 1989 .

[31]  S. Idso,et al.  Wheat canopy temperature: A practical tool for evaluating water requirements , 1977 .

[32]  T. Schmugge,et al.  Passive Microwave Remote Sensing of Soil Moisture , 1997 .

[33]  Ian J. Barton,et al.  Infrared continuum water vapor absorption coefficients derived from satellite data. , 1991, Applied optics.

[34]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[35]  J. Labed,et al.  Spectral properties of land surfaces in the thermal infrared: 1. Laboratory measurements of absolute spectral emissivity signatures , 1990 .

[36]  George R. Diak,et al.  Improvements to models and methods for evaluating the land-surface energy balance and ‘effective’ roughness using radiosonde reports and satellite-measured ‘skin’ temperature data , 1993 .

[37]  John W. Salisbury,et al.  Emissivity of terrestrial materials in the 8-14 microns atmospheric window , 1992 .

[38]  W. Rees Infrared emissivities of Arctic land cover types , 1993 .

[39]  D. Kimes Azimuthal radiometric temperature measurements of wheat canopies. , 1981, Applied optics.

[40]  G. Meehl Influence of the land surface in the Asian summer monsoon , 1994 .

[41]  Knut Stamnes,et al.  A new multi-layer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres , 1984 .

[42]  P. Sellers,et al.  The First ISLSCP Field Experiment (FIFE) , 1988 .

[43]  Thomas Jackson,et al.  Salinity Effects on the Microwave Emission of Soils , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[44]  C. Ottlé,et al.  Effect of atmospheric absorption and surface emissivity on the determination of land surface temperature from infrared satellite data , 1993 .

[45]  R. A. Sutherland,et al.  Broadband and Spectral Emissivities (2–18 μm) of Some Natural Soils and Vegetation , 1986 .

[46]  J. Muller,et al.  Terrestrial remote sensing science and algorithms planned for EOS/MODIS , 1994 .

[47]  P. S. Kealy,et al.  A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies , 1992 .

[48]  S. Li a Component Decomposition Model for Evaluating Atmospheric Effects in Remote Sensing , 1985 .

[49]  F. Becker,et al.  The impact of spectral emissivity on the measurement of land surface temperature from a satellite , 1987 .

[50]  J. Soha,et al.  Middle infrared multispectral aircraft scanner data: analysis for geological applications. , 1980, Applied optics.

[51]  A. Kahle Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California , 1987 .

[52]  Christopher M. U. Neale,et al.  Land surface temperature derived from the SSM/I passive microwave brightness temperatures , 1990 .

[53]  J. Susskind,et al.  Remote Sensing of Weather and Climate Parameters From , 1984 .

[54]  Andrew Harris,et al.  An extension to the split-window technique giving improved atmospheric correction and total water vapour , 1992 .

[55]  C. Prabhakara,et al.  Estimation of sea surface temperature from remote sensing in the 11‐ to 13‐μm window region , 1974 .

[56]  John W. Salisbury,et al.  Infrared (8–14 μm) remote sensing of soil particle size , 1992 .

[57]  Thomas J. Schmugge,et al.  Land Surface Evaporation , 1991 .

[58]  W. Wiscombe,et al.  Exponential-sum fitting of radiative transmission functions , 1977 .

[59]  R. H. Tipping,et al.  A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III , 1992 .

[60]  Warren J. Wiscombe,et al.  Extension of the doubling method to inhomogeneous sources , 1976 .

[61]  Z. Li,et al.  Feasibility of land surface temperature and emissivity determination from AVHRR data , 1993 .

[62]  Thomas J. Schmugge,et al.  Land surface evaporation : measurement and parameterization , 1991 .

[63]  J. Dozier,et al.  Development of practical multiband algorithms for estimating land-surface temperature from EOS/MODIS data , 1994 .

[64]  B. L. Blad,et al.  Estimation of sensible heat flux from remotely sensed canopy temperatures , 1992 .

[65]  José A. Sobrino,et al.  Determination of frosts in orange groves from NOAA-9 AVHRR data , 1989 .

[66]  Thomas Schmugge,et al.  Passive Microwave Soil Moisture Research , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[67]  Jeff Dozier,et al.  Effect of Viewing Angle on the Infrared Brightness Temperature of Snow , 1982 .

[68]  J. Dozier,et al.  Effects Of The Atmosphere And Surface Emissivity On The Thermal Infrared Spectral Signature Measured From Modis-n , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.