Symplectic fillability of tight contact structures on torus bundles

We study weak versus strong symplectic llability of some tight contact structures on torus bundles over the circle. In particular, we prove that almost all of these tight contact structures are weakly, but not strongly symplectically llable. For the 3{torus this theorem was established by Eliashberg. AMS Classication 53D35; 57M50, 57R65

[1]  John B. Etnyre,et al.  Tight contact structures with no symplectic fillings , 2000, math/0010044.

[2]  K. Honda On the classification of tight contact structures I , 1999, math/9910127.

[3]  Emmanuel Giroux Structures de contact en dimension trois et bifurcations des feuilletages de surfaces , 1999, math/9908178.

[4]  Emmanuel Giroux Une infinité de structures de contact tendues sur une infinité de variétés , 1999 .

[5]  John B. Etnyre,et al.  Symplectic convexity in low-dimensional topology , 1998 .

[6]  Robert E. Gompf Handlebody construction of Stein surfaces , 1998, math/9803019.

[7]  Emmanuel Giroux Convexité en topologie de contact , 1991 .

[8]  D. Mcduff Symplectic manifolds with contact type boundaries , 1991 .

[9]  A. Weinstein Contact surgery and symplectic handlebodies , 1991 .

[10]  Y. Eliashberg TOPOLOGICAL CHARACTERIZATION OF STEIN MANIFOLDS OF DIMENSION >2 , 1990 .

[11]  J. Gray SOME GLOBAL PROPERTIES OF CONTACT STRUCTURES , 1959 .

[12]  András I. Stipsicz,et al.  4-manifolds and Kirby calculus , 1999 .

[13]  Kanda Yutaka The classification of tight contact structures on the 3-torus , 1997 .

[14]  Y. Eliashberg Unique holomorphically fillable contact structure on the 3-torus , 1996 .

[15]  J. Morgan,et al.  Smooth Four-Manifolds and Complex Surfaces , 1994 .

[16]  Emmanuel Giroux Une structure de contact, même tendue, est plus ou moins tordue , 1994 .

[17]  Charles-Michel Marle,et al.  Symplectic geometry and analytical mechanics , 1987 .

[18]  Robert Lipshitz,et al.  Algebraic & Geometric Topology , 2023 .