Symplectic fillability of tight contact structures on torus bundles
暂无分享,去创建一个
[1] John B. Etnyre,et al. Tight contact structures with no symplectic fillings , 2000, math/0010044.
[2] K. Honda. On the classification of tight contact structures I , 1999, math/9910127.
[3] Emmanuel Giroux. Structures de contact en dimension trois et bifurcations des feuilletages de surfaces , 1999, math/9908178.
[4] Emmanuel Giroux. Une infinité de structures de contact tendues sur une infinité de variétés , 1999 .
[5] John B. Etnyre,et al. Symplectic convexity in low-dimensional topology , 1998 .
[6] Robert E. Gompf. Handlebody construction of Stein surfaces , 1998, math/9803019.
[7] Emmanuel Giroux. Convexité en topologie de contact , 1991 .
[8] D. Mcduff. Symplectic manifolds with contact type boundaries , 1991 .
[9] A. Weinstein. Contact surgery and symplectic handlebodies , 1991 .
[10] Y. Eliashberg. TOPOLOGICAL CHARACTERIZATION OF STEIN MANIFOLDS OF DIMENSION >2 , 1990 .
[11] J. Gray. SOME GLOBAL PROPERTIES OF CONTACT STRUCTURES , 1959 .
[12] András I. Stipsicz,et al. 4-manifolds and Kirby calculus , 1999 .
[13] Kanda Yutaka. The classification of tight contact structures on the 3-torus , 1997 .
[14] Y. Eliashberg. Unique holomorphically fillable contact structure on the 3-torus , 1996 .
[15] J. Morgan,et al. Smooth Four-Manifolds and Complex Surfaces , 1994 .
[16] Emmanuel Giroux. Une structure de contact, même tendue, est plus ou moins tordue , 1994 .
[17] Charles-Michel Marle,et al. Symplectic geometry and analytical mechanics , 1987 .
[18] Robert Lipshitz,et al. Algebraic & Geometric Topology , 2023 .