Evaluation of the yield potential and physicochemical properties of the biomass of Salix viminalis × Populus tremula hybrids

[1]  William G. Cochran,et al.  Experimental Designs, 2nd Edition , 1950 .

[2]  J. Pinon Les rouilles du Peuplier en France Systematique et repartition du stade uredien , 1973 .

[3]  L. Zsuffa Genetic improvement of willows for energy plantations , 1990 .

[4]  D. J. Royle,et al.  Identity and host alternation of some willow rusts (Melampsora spp.) in England , 1993 .

[5]  U. Gullberg Towards making willows pilot species for coppicing production , 1993 .

[6]  S. Larsson,et al.  Genetic improvement of willow (Salix) as a source of bioenergy. , 1994 .

[7]  K. Lindegaard,et al.  Breeding willows for biomass. , 1997 .

[8]  Ralph E.H. Sims,et al.  Fuel characteristics of short rotation forest biomass , 1999 .

[9]  J. P. Hall,et al.  Sustainable production of forest biomass for energy , 2002 .

[10]  S. Szczukowski,et al.  Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land , 2018 .

[11]  S. Orlović,et al.  Wood and bark of some poplar and willow clones as fuelwood , 2002 .

[12]  Wilhelm Claupein,et al.  Quantity and quality of harvestable biomass from Populus short rotation coppice for solid fuel use - a review of the physiological basis and management influences. , 2003 .

[13]  T. Volk,et al.  Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. , 2003 .

[14]  M. Lascoux,et al.  Genetic Structure of Melampsora Epitea Populations in Swedish Salix Viminalis Plantations , 2001, European Journal of Plant Pathology.

[15]  G. Keoleian,et al.  Renewable Energy from Willow Biomass Crops: Life Cycle Energy, Environmental and Economic Performance , 2005 .

[16]  M. Pei,et al.  Variability and population biology of Melampsora rusts on poplars. , 2005 .

[17]  Technology and policy requirements in the drive towards improving bioenergy efficiency. , 2008 .

[18]  M. Stolarski,et al.  Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. , 2008 .

[19]  J. Przyborowski,et al.  The search for genetic sources of willow resistance to rust (Melampsora epitea). , 2008 .

[20]  M. Delwiche,et al.  Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production , 2009 .

[21]  M. Hinchee,et al.  Short-rotation woody crops for bioenergy and biofuels applications , 2009, In Vitro Cellular & Developmental Biology - Plant.

[22]  Donghai Wang,et al.  Biofuels from Lignocellulosic Biomass , 2010 .

[23]  J. Przyborowski,et al.  The analysis of genetic diversity of Salix viminalis genotypes as a potential source of biomass by RAPD markers , 2010 .

[24]  E. Zenkteler,et al.  Cytological analysis of hybrid embryos of intergeneric crosses between Salix viminalis and Populus species. , 2010 .

[25]  Mariusz J. Stolarski,et al.  Willow biomass production under conditions of low-input agriculture on marginal soils , 2011 .

[26]  M. Stolarski,et al.  Short rotation willow coppice biomass as an industrial and energy feedstock , 2011 .

[27]  Abdelali Barakat,et al.  A successful application of the embryo rescue technique as a model for studying crosses between Salix viminalis and Populus species , 2011 .

[28]  M. Jędryczka,et al.  Life cycle and genetic diversity of willow rusts (Melampsora spp.) in Europe , 2012 .

[29]  J. Przyborowski,et al.  Morphology of uredinia and urediniospores of the fungus Melampsora larici-epitea Kleb. a damaging pathogen of common osier (Salix viminalis L.) in Poland , 2012 .