Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities

We investigate non-equilibrium phase transitions for driven atomic ensembles, interacting with a cavity mode, coupled to a Markovian dissipative bath. In the thermodynamic limit and at low-frequencies, we show that the distribution function of the photonic mode is thermal, with an e ective temperature set by the atom-photon interaction strength. This behavior characterizes the static and dynamic critical exponents of the associated superradiance transition. Motivated by these considerations, we develop a general Keldysh path integral approach, that allows us to study physically relevant nonlinearities beyond the idealized Dicke model. Using standard diagrammatic techniques, we take into account the leading-order corrections due to the finite number of atoms N. For finite N, the photon mode behaves as a damped, classical non-linear oscillator at finite temperature. For the atoms, we propose a Dicke action that can be solved for any N and correctly captures the atoms’ depolarization due to dissipative dephasing.

[1]  Vojkan Jaksic,et al.  Field Theory of Non-Equilibrium Systems , 2012 .

[2]  J. Ignacio Cirac,et al.  Noise-driven dynamics and phase transitions in fermionic systems , 2012, 1207.1653.

[3]  D. Nagy,et al.  Finite-size scaling in the quantum phase transition of the open-system Dicke model , 2012, 1206.5131.

[4]  András Vukics,et al.  C++QEDv2: The multi-array concept and compile-time algorithms in the definition of composite quantum systems , 2012, Comput. Phys. Commun..

[5]  Markus P. Mueller,et al.  Quantum Charge Glasses of Itinerant Fermions with Cavity-Mediated Long-Range Interactions , 2012, 1205.4027.

[6]  J. Cirac,et al.  Dissipative phase transition in a central spin system , 2012, 1205.3341.

[7]  J. Bohnet,et al.  A steady-state superradiant laser with less than one intracavity photon , 2012, Nature.

[8]  F. Brennecke,et al.  Roton-Type Mode Softening in a Quantum Gas with Cavity-Mediated Long-Range Interactions , 2012, Science.

[9]  A. Kamenev Field Theory of Non-Equilibrium Systems , 2011 .

[10]  E. Demler,et al.  Dynamics and universality in noise-driven dissipative systems , 2011, 1110.3678.

[11]  Jonathan Keeling,et al.  Dynamics of nonequilibrium Dicke models , 2011, 1110.1348.

[12]  P. Strack,et al.  Dicke quantum spin glass of atoms and photons. , 2011, Physical review letters.

[13]  M. Fleischhauer,et al.  Critical exponents of steady-state phase transitions in fermionic lattice models , 2011, 1108.2263.

[14]  P. Goldbart,et al.  Frustration and glassiness in spin models with cavity-mediated interactions. , 2011, Physical review letters.

[15]  D. Nagy,et al.  Critical exponent of a quantum-noise-driven phase transition: The open-system Dicke model , 2011, 1107.4323.

[16]  Ozgur Esat Mustecapliouglu,et al.  Excitations of optically driven atomic condensate in a cavity: theory of photodetection measurements , 2011, 1107.3108.

[17]  S. Filipp,et al.  Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics , 2010, 1011.3732.

[18]  P. Zoller,et al.  Dissipation-induced d-wave pairing of fermionic atoms in an optical lattice. , 2010, Physical review letters.

[19]  P. Goldbart,et al.  Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration , 2010, 1007.0922.

[20]  Andrea Micheli,et al.  Dynamical phase transitions and instabilities in open atomic many-body systems. , 2010, Physical review letters.

[21]  D. Nagy,et al.  Dicke-model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity. , 2009, Physical review letters.

[22]  F. Brennecke,et al.  Dicke quantum phase transition with a superfluid gas in an optical cavity , 2009, Nature.

[23]  A. Kamenev,et al.  Keldysh technique and non-linear σ-model: basic principles and applications , 2009, 0901.3586.

[24]  Qing-Hu Chen,et al.  Large-N scaling behavior of the ground-state energy, fidelity, and the order parameter in the Dicke model , 2008, 0812.0321.

[25]  A. Millis,et al.  Current-driven quantum criticality in itinerant electron ferromagnets , 2008, 0804.3980.

[26]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[27]  Yong Baek Kim,et al.  Nonequilibrium-induced metal-superconductor quantum phase transition in graphene , 2007, 0712.1043.

[28]  H. Ritsch,et al.  Ultracold atoms in optical lattices generated by quantized light fields , 2007, 0710.4220.

[29]  P. Littlewood,et al.  Mean-field theory and fluctuation spectrum of a pumped decaying Bose-Fermi system across the quantum condensation transition , 2006, cond-mat/0611456.

[30]  H. Carmichael,et al.  Proposed Realization of the Dicke-Model Quantum Phase Transition in an Optical Cavity QED System , 2006, quant-ph/0607115.

[31]  A. Millis,et al.  Nonequilibrium quantum criticality in open electronic systems. , 2006, Physical review letters.

[32]  A. Altland,et al.  Condensed Matter Field Theory , 2006 .

[33]  P. Littlewood,et al.  Nonequilibrium quantum condensation in an incoherently pumped dissipative system. , 2006, Physical review letters.

[34]  S. Dusuel,et al.  Finite-size scaling exponents in the Dicke model , 2005, cond-mat/0510281.

[35]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[36]  V. Vuletić,et al.  Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering. , 2003, Physical review letters.

[37]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[38]  C. Emary,et al.  Chaos and the quantum phase transition in the Dicke model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  S. Sachdev,et al.  Quantum Phase Transitions: A first course , 1999 .

[40]  M. Fleischhauer,et al.  EFFECTS OF FINITE-SYSTEM SIZE IN NONLINEAR OPTICAL SYSTEMS : A QUANTUM MANY-BODY APPROACH TO PARAMETRIC OSCILLATION , 1997 .

[41]  Swain,et al.  Many-body theory of quantum noise. , 1993, Physical review letters.

[42]  Swain,et al.  Many-body quantum theory of the optical parametric oscillator. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[43]  Klaus Mølmer,et al.  A Monte Carlo wave function method in quantum optics , 1993, Optical Society of America Annual Meeting.

[44]  Ye,et al.  Solvable spin glass of quantum rotors. , 1992, Physical review letters.

[45]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[46]  Castro Neto AH,et al.  Quantum dynamics of an electromagnetic mode in a cavity. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[47]  C. Gardiner,et al.  Squeezing of intracavity and traveling-wave light fields produced in parametric amplification , 1984 .

[48]  S. Sachdev Atom in a damped cavity , 1984 .

[49]  V. N. Popov,et al.  Behavior of the partition function of Dicke type models in the limit of a large number of atoms , 1982 .

[50]  Elliott H. Lieb,et al.  On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model , 1973 .

[51]  Y. K. Wang,et al.  Phase Transition in the Dicke Model of Superradiance , 1973 .

[52]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[53]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[54]  H. Carmichael Master equations and fokker-planck equations , 2010 .

[55]  H. Carmichael Statistical Methods in Quantum Optics 1 , 1999 .

[56]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[57]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[58]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[59]  and as an in , 2022 .

[60]  I. Miyazaki,et al.  AND T , 2022 .