Prospects on Planar Quantum Computing

High-fidelity planar quantum circuits have been recently experimentally demonstrated, enabling a new generation of quantum computing, based on reliable, monolithically integrated planar optical devices. The present paper is a contribution to the development of this new concept, giving a general and at most comprehensive overview of quantum algorithms that can be implemented using planar optics devices. Starting from the four postulates of quantum mechanics, the complete set of quantum-gate operations is described using only planar 1-qubit rotations and CNOT gates, both in universal and non-deterministic forms. Both single-photon and coherent-states quantum computing are considered, and the effects of photon losses and phase noise are investigated.

[1]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[2]  G. J. Milburn,et al.  Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping , 1998, quant-ph/9809037.

[3]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[4]  U. Vazirani On the power of quantum computation , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[6]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[7]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[8]  Roberto Morandotti,et al.  Quantum and classical correlations in waveguide lattices. , 2008, Physical review letters.

[9]  R. Schmidt,et al.  Switched directional couplers with alternating Δ Β , 1976 .

[10]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[11]  N. Frigo,et al.  A generalized geometrical representation of coupled mode theory , 1986 .

[12]  Jian H. Zhao,et al.  Optical Filter Design and Analysis , 1999 .

[13]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[14]  Geraldo A. Barbosa,et al.  Fast and secure key distribution using mesoscopic coherent states of light , 2003 .

[15]  P. Knight,et al.  Quantum gates and decoherence , 2004, quant-ph/0403152.

[16]  Near-optimal quantum state discrimination of optical coherent states , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[17]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[18]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  High-fidelity linear optical quantum computing with polarization encoding (11 pages) , 2005, quant-ph/0508113.

[20]  Paul D. Townsend,et al.  Quantum cryptography on multiuser optical fibre networks , 1997, Nature.

[21]  A. Tomita,et al.  Measured Quantum Fourier Transform of 1024 Qubits on Fiber Optics , 2004, quant-ph/0401100.

[22]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[23]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[24]  J. D. Franson,et al.  Experimental demonstration of a quantum circuit using linear optics gates , 2005 .

[25]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[27]  R Ulrich,et al.  Representation of codirectional coupled waves. , 1977, Optics letters.

[28]  H. Weinfurter,et al.  Universal unitary gate for single-photon two-qubit states , 2001, quant-ph/0101064.

[29]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  Chuang,et al.  Quantum bit regeneration. , 1996, Physical review letters.

[31]  N. J. Cerf,et al.  Optical simulation of quantum logic , 1998 .

[32]  Sailing He,et al.  Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler , 2007, IEEE Photonics Technology Letters.

[33]  Kae Nemoto,et al.  04 08 11 8 v 2 3 1 A ug 2 00 4 A near deterministic linear optical CNOT gate , 2008 .

[34]  Seung Gol Lee,et al.  Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application , 2003 .

[35]  Ryosuke Shimizu,et al.  Observation of optical-fibre Kerr nonlinearity at the single-photon level , 2009 .

[36]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[37]  Luis L. Sánchez-Soto,et al.  A quantum description of the beam splitter , 1995 .

[38]  An algebraic approach to linear-optical schemes for deterministic quantum computing , 2005, quant-ph/0504108.

[39]  T. Ralph,et al.  Fault-tolerant linear optical quantum computing with small-amplitude coherent States. , 2007, Physical review letters.

[40]  M. J. Fitch,et al.  Experimental controlled-NOT logic gate for single photons in the coincidence basis , 2003, quant-ph/0303095.

[41]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[42]  T. Nishioka,et al.  "Circular type" quantum key distribution , 2001, IEEE Photonics Technology Letters.

[43]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[44]  J. Bergou,et al.  Coherent States Engineering with Linear Optics , 2008, 0804.4499.

[45]  Horace P. Yuen,et al.  Quantum amplifiers, quantum duplicators and quantum cryptography , 1996 .

[46]  T. Ralph,et al.  Transmission of optical coherent-state qubits , 2003, quant-ph/0311093.

[47]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[48]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[49]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[50]  Gerard J. Milburn,et al.  Quantum Computation with Coherent States, Linear Interactions and Superposed Resources , 2001 .

[51]  Carl W. Helstrom,et al.  The minimum variance of estimates in quantum signal detection , 1968, IEEE Trans. Inf. Theory.

[52]  R. Blume-Kohout,et al.  Climbing Mount Scalable: Physical Resource Requirements for a Scalable Quantum Computer , 2002, quant-ph/0204157.

[53]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[54]  J D Franson,et al.  High-fidelity quantum logic operations using linear optical elements. , 2002, Physical review letters.

[55]  J. Franson,et al.  Demonstration of nondeterministic quantum logic operations using linear optical elements. , 2001, Physical review letters.

[56]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[57]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[58]  Jeremy L O'Brien,et al.  Linear optical quantum computing , 2002 .

[59]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[60]  Gerard J. Milburn,et al.  Quantum computation based on linear optics , 2002, SPIE/COS Photonics Asia.

[61]  Two-qbit gates based on coupled quantum wires , 2000, 2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502).

[62]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[63]  John C. Howell,et al.  Reducing the complexity of linear optics quantum circuits , 2000 .

[64]  Jian H. Zhao,et al.  Optical Filter Design and Analysis: A Signal Processing Approach , 1999 .

[65]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[66]  Jian Fu,et al.  Quantum computations with optical waveguide modes , 2002, SPIE Defense + Commercial Sensing.

[67]  N. K. Langford,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2002 .

[68]  Aephraim M. Steinberg,et al.  Conditional-phase switch at the single-photon level. , 2002, Physical review letters.

[69]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[70]  Michael A. Nielsen,et al.  Noise thresholds for optical cluster-state quantum computation (26 pages) , 2006 .

[71]  A. Siegman Fiber Fourier optics. , 2001, Optics letters.

[72]  Sandor Imre,et al.  Quantum Computing and Communications: An Engineering Approach , 2005 .

[73]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[74]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[75]  S. Mohammadnejad,et al.  Quantum state swapping in optical quantum communication using Mach-Zehnder interferometer , 2008, 2008 International Symposium on Telecommunications.

[76]  Shigeki Takeuchi,et al.  Quantum phase gate for photonic qubits using only beam splitters and postselection , 2001, quant-ph/0111092.

[77]  JM Geremia Distinguishing between optical coherent states with imperfect detection (9 pages) , 2004 .

[78]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[79]  G. Cincotti,et al.  Fiber wavelet filters [and planar waveguide couplers for full-wavelength demultiplexers] , 2002 .

[80]  U. Vazirani,et al.  Quantum algorithms and the fourier transform , 2004 .

[81]  Geraldo A. Barbosa,et al.  Quantum half-adder , 2006 .