Contact Angles of Lennard-Jones Liquids and Droplets on Planar Surfaces

The contact angles of liquids and droplets of Lennard-Jones particles on a solid surface are determined by molecular dynamics simulations. The simulations show that the angles of contact are established within the first fluid layer. The droplets are not spherical segment-shaped. For an attractive surface corresponding to a small contact angle, the observed contact angles disagree with the corresponding angles obtained for macroscopic systems and using Young's equation and its extension for droplets with line tension.

[1]  G. Saville Computer simulation of the liquid–solid–vapour contact angle , 1977 .

[2]  J. Coninck,et al.  Partial to complete wetting: A microscopic derivation of the Young relation , 1987 .

[3]  P. A. Monson,et al.  Further studies of prewetting transitions via Monte Carlo simulation , 1993 .

[4]  Søren Toxvaerd The structure and thermodynamics of a solid–fluid interface , 1981 .

[5]  Dongqing Li Drop size dependence of contact angles and line tensions of solid-liquid systems , 1996 .

[6]  A. Checco,et al.  Nonlinear dependence of the contact angle of nanodroplets on contact line curvature. , 2003, Physical review letters.

[7]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[8]  G. Saville,et al.  Computer simulation of a gas–liquid surface. Part 1 , 1977 .

[9]  S. Toxvaerd Molecular dynamics simulation of heterogeneous nucleation at a structureless solid surface , 2002 .

[10]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[11]  S. Toxvaerd,et al.  Molecular dynamics of interfaces in opposing fields , 2001 .

[12]  Frank H. Stillinger,et al.  Rigorous Basis of the Frenkel-Band Theory of Association Equilibrium , 1963 .

[13]  Fang Hai-Ping,et al.  Drop Size Dependence of the Contact Angle of Nanodroplets , 2005 .

[14]  S. Miracle-Sole,et al.  Generalized Young's equation for rough and heterogeneous substrates: a microscopic proof. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Søren Toxvaerd,et al.  Algorithms for canonical molecular dynamics simulations , 1991 .

[16]  A. W. Neumann,et al.  Generalization of the classical theory of capillarity , 1977 .

[17]  S. Herminghaus,et al.  Three-phase contact line energetics from nanoscale liquid surface topographies , 2000, Physical review letters.

[18]  S. Toxvaerd Comment on: Reversible multiple time scale molecular dynamics , 1993 .

[19]  W. Saam,et al.  New Phase-Transition Phenomena in Thin Argon Films , 1977 .

[20]  J. A. Barker Surface tension and atomic interactions in simple liquids , 1993 .