Electrochemical and Operando Spectroscopic Studies of Sr2 Fe1.5 Mo0.5 O6-δ Anode Catalysts in Solid Oxide Fuel Cells Operating with Direct Alcohol Fuels

[1]  Zunjie Wei,et al.  Microstructural evolution and mechanical strengthening mechanism of the high pressure heat treatment (HPHT) on Al-Mg alloy , 2017 .

[2]  Wei Li,et al.  Effect of Mo content on the microstructures and electrochemical performances of La0.75Mg0.25Ni3.2−xCo0.2Al0.1Mox (x = 0, 0.10, 0.15, 0.20) hydrogen storage alloys , 2017 .

[3]  Ting Liu,et al.  Enhanced hydrogen storage properties of LiBH4 generated using a porous Li3BO3 catalyst , 2016 .

[4]  George Tsatsaronis,et al.  Economic assessment of a solid oxide fuel cell system for biogas utilization in sewage plants , 2016 .

[5]  T. Reitz,et al.  Sr2−XLaXMgMoO6 and Sr2−XLaXMgNbO6 for Use as Sulfur‐Tolerant Anodes Without a Buffer Layer , 2014 .

[6]  Michael B. Pomfret,et al.  Ni/YSZ solid oxide fuel cell anodes operating on humidified ethanol fuel feeds: An optical study , 2013 .

[7]  T. Reitz,et al.  A2MgMoO6 (A = Sr,Ba) for use as sulfur tolerant anodes , 2013 .

[8]  Hongjiao Li,et al.  An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode , 2012 .

[9]  Michele Pavone,et al.  Unveiling structure-property relationships in Sr2Fe(1.5)Mo(0.5)O(6-δ), an electrode material for symmetric solid oxide fuel cells. , 2012, Journal of the American Chemical Society.

[10]  Yongdan Li,et al.  Direct CH4 fuel cell using Sr2FeMoO6 as an anode material , 2011 .

[11]  Michael B. Pomfret,et al.  Methanol and Ethanol Fuels in Solid Oxide Fuel Cells: A Thermal Imaging Study of Carbon Deposition , 2011 .

[12]  R. Walker,et al.  In Situ Optical Studies of Solid Oxide Fuel Cells Operating With Dry and Humidified Oxygenated Fuels , 2011 .

[13]  F. Chen,et al.  A Novel Redox Stable Catalytically Active Electrode for Solid Oxide Fuel Cells , 2011 .

[14]  Michael B. Pomfret,et al.  Direct, In Situ Optical Studies of Ni−YSZ Anodes in Solid Oxide Fuel Cells Operating with Methanol and Methane , 2011 .

[15]  Massimiliano Cimenti,et al.  Direct utilization of methanol and ethanol in solid oxide fuel cells using Cu–Co(Ru)/Zr0.35Ce0.65O2−δ anodes , 2010 .

[16]  A. Dean,et al.  Selective removal of ethylene, a deposit precursor, from a "dirty" synthesis gas stream via gas-phase partial oxidation. , 2010, The journal of physical chemistry. A.

[17]  S. Assabumrungrat,et al.  Modelling of tubular-designed solid oxide fuel cell with indirect internal reforming operation fed by different primary fuels , 2010 .

[18]  Michael B. Pomfret,et al.  Thermal imaging of solid oxide fuel cell anode processes , 2010 .

[19]  Massimiliano Cimenti,et al.  Thermodynamic analysis of solid oxide fuel cells operated with methanol and ethanol under direct utilization, steam reforming, dry reforming or partial oxidation conditions , 2009 .

[20]  Michael B. Pomfret,et al.  Hydrocarbon Fuels in Solid Oxide Fuel Cells: In Situ Raman Studies of Graphite Formation and Oxidation , 2008 .

[21]  U. Stimming,et al.  Recent anode advances in solid oxide fuel cells , 2007 .

[22]  Christopher S. Johnson,et al.  Sulfur-tolerant anode materials for solid oxide fuel cell application , 2007 .

[23]  Haizhong Guo,et al.  Raman spectroscopy of ordered double perovskite La 2 Co Mn O 6 thin films , 2007 .

[24]  Michael B. Pomfret,et al.  In situ studies of fuel oxidation in solid oxide fuel cells. , 2007, Analytical chemistry.

[25]  Michael B. Pomfret,et al.  Fuel oxidation efficiencies and exhaust composition in solid oxide fuel cells. , 2006, Environmental science & technology.

[26]  Michael B. Pomfret,et al.  High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes. , 2006, The journal of physical chemistry. B.

[27]  M. Ihara,et al.  Quickly rechargeable direct carbon solid oxide fuel cell with propane for recharging , 2006 .

[28]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[29]  M. Kakihana,et al.  Raman scattering studies of the Ba2MnWO6 and Sr2MnWO6 double perovskites. , 2006, The journal of physical chemistry. B.

[30]  Michael B. Pomfret,et al.  Structural and compositional characterization of yttria-stabilized zirconia: evidence of surface-stabilized, low-valence metal species. , 2005, Analytical chemistry.

[31]  Raymond J. Gorte,et al.  An Examination of Carbonaceous Deposits in Direct-Utilization SOFC Anodes , 2004 .

[32]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[33]  N. Mestres,et al.  Aging of Sr2FeMoO6 and related oxides , 2003 .

[34]  R. Mark Ormerod Solid oxide fuel cells. , 2003, Chemical Society reviews.

[35]  J. Vohs,et al.  Role of Hydrocarbon Deposits in the Enhanced Performance of Direct-Oxidation SOFCs , 2003 .

[36]  Chunshan Song,et al.  Fuel processing for low-temperature and high-temperature fuel cells , 2002 .

[37]  A. Petric,et al.  Electrical Properties of Yttrium-Doped Strontium Titanate under Reducing Conditions , 2002 .

[38]  W. L. Worrell,et al.  Electronic conduction mechanism in yttria-stabilized zirconia-titania under reducing atmospheres , 1996 .

[39]  K. Wippermann,et al.  Catalysis of the electrochemical processes on solid oxide fuel cell cathodes , 1996 .

[40]  A. Manthiram,et al.  Oxide-Ion Electrolytes , 1992 .