On extremal cacti with respect to the edge Szeged index and edge-vertex Szeged index

The edge Szeged index and edge-vertex Szeged index of a graph are defined as $Sz_{e}(G)=\sum\limits_{uv\in E(G)}m_{u}(uv|G)m_{v}(uv|G)$ and $Sz_{ev}(G)=\frac{1}{2} \sum\limits_{uv \in E(G)}[n_{u}(uv|G)m_{v}(uv|G)+n_{v}(uv|G)m_{u}(uv|G)],$ respectively, where $m_{u}(uv|G)$ (resp., $m_{v}(uv|G)$) is the number of edges whose distance to vertex $u$ (resp., $v$) is smaller than the distance to vertex $v$ (resp., $u$), and $n_{u}(uv|G)$ (resp., $n_{v}(uv|G)$) is the number of vertices whose distance to vertex $u$ (resp., $v$) is smaller than the distance to vertex $v$ (resp., $u$), respectively. A cactus is a graph in which any two cycles have at most one common vertex. In this paper, the lower bounds of edge Szeged index and edge-vertex Szeged index for cacti with order $n$ and $k$ cycles are determined, and all the graphs that achieve the lower bounds are identified.

[1]  Shujing Wang On extremal cacti with respect to the Szeged index , 2017, Appl. Math. Comput..

[2]  R. Cooke Real and Complex Analysis , 2011 .

[3]  J. Goguen L-fuzzy sets , 1967 .

[4]  Yong Liu,et al.  Maximum Wiener Index of Trees with Given Degree Sequence , 2010 .

[5]  Hui Dong,et al.  Maximum Wiener Index of Unicyclic Graphs with Fixed Maximum Degree , 2012, Ars Comb..

[6]  Xueliang Li,et al.  The (revised) Szeged index and the Wiener index of a nonbipartite graph , 2014, Eur. J. Comb..

[7]  Xueliang Li,et al.  Bicyclic graphs with maximal revised Szeged index , 2013, Discret. Appl. Math..

[8]  I. Gutman,et al.  The Edge Version of the Szeged Index , 2008 .

[9]  Hua Yang,et al.  Bounds for the Sum-Balaban index and (revised) Szeged index of regular graphs , 2015, Appl. Math. Comput..

[10]  Ali Reza Ashrafi,et al.  A matrix method for computing Szeged and vertex PI indices of join and composition of graphs , 2008 .

[11]  Saharon Shelah,et al.  Separability properties of almost — disjoint families of sets , 1972 .

[13]  Bo Zhou,et al.  ON SZEGED INDICES OF UNICYCLIC GRAPHS , 2010 .

[14]  Ali Reza Ashrafi,et al.  Revised and edge revised Szeged indices of graphs , 2014, Ars Math. Contemp..

[15]  Han-Yuan Deng The trees on n ‚ 9 vertices with the flrst to seventeenth greatest Wiener indices are chemical trees 1 , 2007 .

[16]  Shuchao Li,et al.  On the further relation between the (revised) Szeged index and the Wiener index of graphs , 2016, Discret. Appl. Math..

[17]  Andrey A. Dobrynin,et al.  Graphs Having the Maximal Value of the Szeged Index , 1997 .

[18]  Bo Zhou,et al.  Edge Szeged Index of Unicyclic Graphs , 2010 .

[19]  Ali Reza Ashrafi,et al.  Vertex and edge PI indices of Cartesian product graphs , 2008, Discret. Appl. Math..

[20]  Indra Rajasingh,et al.  Computing Szeged Index of Certain Nanosheets Using Partition Technique , 2014 .

[21]  Mustapha Aouchiche,et al.  On a conjecture about the Szeged index , 2010, Eur. J. Comb..

[22]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[23]  István Lukovits,et al.  Szeged Index - Applications for Drug Modeling&# , 2005 .

[24]  Bo Zhou,et al.  On the distance Laplacian spectral radius of graphs , 2015 .