Hamilton decompositions of regular tournaments

We show that every sufficiently large regular tournament can a lmost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each � > 0 every regular tournament G of sufficiently large ordern contains at least (1/2 �)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournaments.

[1]  Daniela Kühn,et al.  Multicolored Hamilton Cycles and Perfect Matchings in Pseudorandom Graphs , 2006, SIAM J. Discret. Math..

[2]  Renu C. Laskar,et al.  On decomposition of r-partite graphs into edge-disjoint hamilton circuits , 1976, Discret. Math..

[3]  Carsten Thomassen,et al.  Hamilton Circuits in Regular Tournaments , 1985 .

[4]  Alan M. Frieze,et al.  On packing Hamilton cycles in ?-regular graphs , 2005, J. Comb. Theory, Ser. B.

[5]  J. Moon Topics on tournaments , 1968 .

[6]  J. A. Bondy,et al.  Basic graph theory: paths and circuits , 1996 .

[7]  Timothy W. Tillson,et al.  A Hamiltonian Decomposition of K & , 2 m > 8 , 2003 .

[8]  Guojun Li,et al.  Edge disjoint Hamilton cycles in graphs , 2000 .

[9]  Jørgen Bang-Jensen,et al.  Decomposing k-ARc-Strong Tournaments Into Strong Spanning Subdigraphs , 2004, Comb..

[10]  Deryk Osthus,et al.  An exact minimum degree condition for Hamilton cycles in oriented graphs , 2008, 0801.0394.

[11]  Béla Bollobás,et al.  Oriented Hamilton Cycles in Oriented Graphs , 1997 .

[12]  Jean-Claude Bermond,et al.  Cycles in digraphs- a survey , 1981, J. Graph Theory.

[13]  Daniela Kühn,et al.  A survey on Hamilton cycles in directed graphs , 2010, Eur. J. Comb..

[14]  C. Thomassen Edge-Disjoint Hamiltonian Paths and Cycles in Tournaments , 1982 .

[15]  Daniela Kühn,et al.  A Dirac-Type Result on Hamilton Cycles in Oriented Graphs , 2007, Combinatorics, Probability and Computing.

[16]  D. Kuhn,et al.  Surveys in Combinatorics 2009: Embedding large subgraphs into dense graphs , 2009, 0901.3541.

[17]  Noga Alon,et al.  Testing subgraphs in directed graphs , 2003, STOC '03.

[18]  Daniela Kühn,et al.  Hamiltonian degree sequences in digraphs , 2008, J. Comb. Theory, Ser. B.

[19]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[20]  Timothy W. Tillson A Hamiltonian decomposition of K2m*, 2m >= 8 , 1980, J. Comb. Theory B.

[21]  Daniela Kühn,et al.  Multicoloured Hamilton cycles and perfect matchings in pseudo-random graphs , 2004 .

[22]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[23]  Roland Häggkvist,et al.  Hamilton Cycles in Oriented Graphs , 1993, Combinatorics, Probability and Computing.

[24]  Bill Jackson,et al.  Long paths and cycles in oriented graphs , 1981, J. Graph Theory.