Reverse transcriptase in motion: conformational dynamics of enzyme-substrate interactions.

Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) catalyzes synthesis of integration-competent, double-stranded DNA from the single-stranded viral RNA genome, combining both polymerizing and hydrolytic functions to synthesize approximately 20,000 phosphodiester bonds. Despite a wealth of biochemical studies, the manner whereby the enzyme adopts different orientations to coordinate its DNA polymerase and ribonuclease (RNase) H activities has remained elusive. Likewise, the lower processivity of HIV-1 RT raises the issue of polymerization site targeting, should the enzyme re-engage its nucleic acid substrate several hundred nucleotides from the primer terminus. Although X-ray crystallography has clearly contributed to our understanding of RT-containing nucleoprotein complexes, it provides a static picture, revealing few details regarding motion of the enzyme on the substrate. Recent development of site-specific footprinting and the application of single molecule spectroscopy have allowed us to follow individual steps in the reverse transcription process with significantly greater precision. Progress in these areas and the implications for investigational and established inhibitors that interfere with RT motion on nucleic acid is reviewed here.

[1]  T. Steitz,et al.  Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. , 1992, Science.

[2]  S. Sarafianos,et al.  YADD Mutants of Human Immunodeficiency Virus Type 1 and Moloney Murine Leukemia Virus Reverse Transcriptase Are Resistant to Lamivudine Triphosphate (3TCTP) In Vitro , 2001, Journal of Virology.

[3]  K. White,et al.  Effects of the Translocation Status of Human Immunodeficiency Virus Type 1 Reverse Transcriptase on the Efficiency of Excision of Tenofovir , 2007, Antimicrobial Agents and Chemotherapy.

[4]  M. Götte Effects of nucleotides and nucleotide analogue inhibitors of HIV-1 reverse transcriptase in a ratchet model of polymerase translocation. , 2006, Current pharmaceutical design.

[5]  R. Hamatake,et al.  Novel Nonnucleoside Inhibitors That Select Nucleoside Inhibitor Resistance Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase , 2006, Antimicrobial Agents and Chemotherapy.

[6]  J. Arnold,et al.  Nucleic acid polymerases employ a general acid for nucleotidyl transfer , 2008, Nature Structural &Molecular Biology.

[7]  R. Schinazi,et al.  Delayed Chain Termination Protects the Anti-hepatitis B Virus Drug Entecavir from Excision by HIV-1 Reverse Transcriptase* , 2008, Journal of Biological Chemistry.

[8]  R. Bambara,et al.  Unique progressive cleavage mechanism of HIV reverse transcriptase RNase H. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Bambara,et al.  Use of an Oligoribonucleotide Containing the Polypurine Tract Sequence as a Primer by HIV Reverse Transcriptase (*) , 1995, The Journal of Biological Chemistry.

[10]  D. Hazuda,et al.  HIV-1 Reverse Transcriptase Plus-strand Initiation Exhibits Preferential Sensitivity to Non-nucleoside Reverse Transcriptase Inhibitors in Vitro* , 2007, Journal of Biological Chemistry.

[11]  W. Rutvisuttinunt,et al.  Stable complexes formed by HIV-1 reverse transcriptase at distinct positions on the primer-template controlled by binding deoxynucleoside triphosphates or foscarnet. , 2007, Journal of molecular biology.

[12]  R. S. Goody,et al.  Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  E. Arnold,et al.  An expanded model of replicating human immunodeficiency virus reverse transcriptase. , 1995, Biochemistry.

[14]  R. Goody,et al.  Refined model for primer/template binding by HIV-1 reverse transcriptase: pre-steady-state kinetic analyses of primer/template binding and nucleotide incorporation events distinguish between different binding modes depending on the nature of the nucleic acid substrate. , 1999, Journal of molecular biology.

[15]  P K Hansma,et al.  Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. , 1999, Biophysical journal.

[16]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[17]  G. Fuller,et al.  Characterization of the IL-6 Responsive Elements in the γ Fibrinogen Gene Promoter (*) , 1995, The Journal of Biological Chemistry.

[18]  K. Anderson,et al.  Mechanism and fidelity of HIV reverse transcriptase. , 1992, The Journal of biological chemistry.

[19]  S. L. Le Grice,et al.  Investigating HIV-1 Polypurine Tract Geometry via Targeted Insertion of Abasic Lesions in the (–)-DNA Template and (+)-RNA Primer* , 2005, Journal of Biological Chemistry.

[20]  A. D. Clark,et al.  Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: implications of conformational changes for polymerization and inhibition mechanisms. , 1996, Structure.

[21]  S. Hughes,et al.  Polypurine tract adjacent to the U3 region of the Rous sarcoma virus genome provides a cis-acting function , 1982, Journal of virology.

[22]  M. Wendeler,et al.  HIV-1 reverse transcriptase can simultaneously engage its DNA/RNA substrate at both DNA polymerase and RNase H active sites: implications for RNase H inhibition. , 2009, Journal of molecular biology.

[23]  J. DeStefano,et al.  Determinants of the RNase H cleavage specificity of human immunodeficiency virus reverse transcriptase. , 1993, Nucleic acids research.

[24]  S. Benkovic,et al.  Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. D. Clark,et al.  Crystal structure of HIV‐1 reverse transcriptase in complex with a polypurine tract RNA:DNA , 2001, The EMBO journal.

[26]  S. L. Le Grice,et al.  Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis , 2006, Nucleic acids research.

[27]  J. Mccoy,et al.  Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching. , 1989, The Journal of biological chemistry.

[28]  B. Marchand,et al.  Site-specific Footprinting Reveals Differences in the Translocation Status of HIV-1 Reverse Transcriptase , 2003, Journal of Biological Chemistry.

[29]  J. Champoux,et al.  RNA-primed initiation of Moloney murine leukemia virus plus strands by reverse transcriptase in vitro , 1984, Journal of virology.

[30]  K. Moelling,et al.  Characterization of reverse transcriptase and RNase H from friend-murine leukemia virus. , 1974, Virology.

[31]  S. L. Le Grice,et al.  Attenuation of DNA replication by HIV-1 reverse transcriptase near the central termination sequence. , 2005, Biochemistry.

[32]  V. Pathak,et al.  Mutations in Human Immunodeficiency Virus Type 1 RNase H Primer Grip Enhance 3′-Azido-3′-Deoxythymidine Resistance , 2007, Journal of Virology.

[33]  J. Mellors,et al.  Zidovudine resistance is suppressed by mutations conferring resistance of human immunodeficiency virus type 1 to foscarnet , 1996, Journal of virology.

[34]  Elio A. Abbondanzieri,et al.  Slide into Action: Dynamic Shuttling of HIV Reverse Transcriptase on Nucleic Acid Substrates , 2008, Science.

[35]  R. Bambara,et al.  Helix Structure and Ends of RNA/DNA Hybrids Direct the Cleavage Specificity of HIV-1 Reverse Transcriptase RNase H (*) , 1996, The Journal of Biological Chemistry.

[36]  Elio A. Abbondanzieri,et al.  Dynamic binding orientations direct activity of HIV reverse transcriptase , 2008, Nature.

[37]  A. D. Clark,et al.  Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[38]  B. Marchand,et al.  The Pyrophosphate Analogue Foscarnet Traps the Pre-translocational State of HIV-1 Reverse Transcriptase in a Brownian Ratchet Model of Polymerase Translocation* , 2007, Journal of Biological Chemistry.

[39]  S. Hughes,et al.  The history of N-methanocarbathymidine: the investigation of a conformational concept leads to the discovery of a potent and selective nucleoside antiviral agent. , 2006, Antiviral research.

[40]  J. Champoux,et al.  Recognition of internal cleavage sites by retroviral RNases H. , 2004, Journal of molecular biology.

[41]  D. Barford,et al.  Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. , 1996, The EMBO journal.

[42]  S. L. Le Grice,et al.  Mutations M184V and Y115F in HIV-1 Reverse Transcriptase Discriminate against “Nucleotide-competing Reverse Transcriptase Inhibitors”* , 2008, Journal of Biological Chemistry.

[43]  S. Zanoli,et al.  Non-nucleoside HIV-1 reverse transcriptase inhibitors di-halo-indolyl aryl sulfones achieve tight binding to drug-resistant mutants by targeting the enzyme-substrate complex. , 2009, Antiviral research.

[44]  A. Telesnitsky,et al.  Footprint analysis of replicating murine leukemia virus reverse transcriptase. , 1995, Science.

[45]  P. V. von Hippel,et al.  Facilitated Target Location in Biological Systems* , 2022 .

[46]  Jennifer L. Knight,et al.  HIV-1 reverse transcriptase structure with RNase H inhibitor dihydroxy benzoyl naphthyl hydrazone bound at a novel site. , 2006, ACS chemical biology.

[47]  H. Gross,et al.  HIV‐1 reverse transcriptase‐associated RNase H cleaves RNA/RNA in arrested complexes: implications for the mechanism by which RNase H discriminates between RNA/RNA and RNA/DNA. , 1995, The EMBO journal.

[48]  W. Beard,et al.  Kinetic analysis of template.primer interactions with recombinant forms of HIV-1 reverse transcriptase. , 1993, Biochemistry.

[49]  D W Rodgers,et al.  The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Champoux,et al.  Analysis of Plus-strand Primer Selection, Removal, and Reutilization by Retroviral Reverse Transcriptases* , 2000, The Journal of Biological Chemistry.

[51]  Marc C Nicklaus,et al.  Experimental and structural evidence that herpes 1 kinase and cellular DNA polymerase(s) discriminate on the basis of sugar pucker. , 2004, Journal of the American Chemical Society.

[52]  P. Harrigan,et al.  Connection Domain Mutations N348I and A360V in HIV-1 Reverse Transcriptase Enhance Resistance to 3′-Azido-3′-deoxythymidine through Both RNase H-dependent and -independent Mechanisms , 2008, Journal of Biological Chemistry.

[53]  D. Baltimore Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of RNA Tumour Viruses , 1970, Nature.

[54]  J. Champoux,et al.  Plus-strand priming by Moloney murine leukemia virus. The sequence features important for cleavage by RNase H. , 1989, Journal of molecular biology.

[55]  S. L. Le Grice,et al.  Pre-existing Distortions in Nucleic Acid Structure Aid Polypurine Tract Selection by HIV-1 Reverse Transcriptase* , 2002, The Journal of Biological Chemistry.

[56]  M. Götte,et al.  Effects of mutations in the connection and RNase H domains of HIV-1 reverse transcriptase on drug susceptibility. , 2008, AIDS reviews.

[57]  R E Glass,et al.  Visualization of single molecules of RNA polymerase sliding along DNA. , 1993, Science.

[58]  J. Champoux,et al.  Specific Cleavages by RNase H Facilitate Initiation of Plus-Strand RNA Synthesis by Moloney Murine Leukemia Virus , 2003, Journal of Virology.

[59]  A. D. Clark,et al.  Structures of HIV‐1 reverse transcriptase with pre‐ and post‐translocation AZTMP‐terminated DNA , 2002, The EMBO journal.

[60]  Robert G. Brinson,et al.  Structural probing of the HIV-1 polypurine tract RNA:DNA hybrid using classic nucleic acid ligands , 2008, Nucleic acids research.

[61]  Thomas A Steitz,et al.  The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase , 2004, Cell.

[62]  P. Boyer,et al.  Fixed conformation nucleoside analogs effectively inhibit excision-proficient HIV-1 reverse transcriptases. , 2005, Journal of molecular biology.

[63]  Antoine M. van Oijen,et al.  A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Stephen H Hughes,et al.  Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. , 2005, Progress in biophysics and molecular biology.

[65]  S. L. Le Grice,et al.  Hydrolysis of RNA/DNA hybrids containing nonpolar pyrimidine isosteres defines regions essential for HIV type 1 polypurine tract selection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Robert G. Brinson,et al.  Probing anomalous structural features in polypurine tract-containing RNA-DNA hybrids with neomycin B. , 2009, Biochemistry.

[67]  S. Sarafianos,et al.  The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase. , 2000, Journal of molecular biology.

[68]  Roger A. Jones,et al.  Structures of HIV-1 RT–DNA complexes before and after incorporation of the anti-AIDS drug tenofovir , 2004, Nature Structural &Molecular Biology.

[69]  J. Hsieh,et al.  Kinetic mechanism of the DNA-dependent DNA polymerase activity of human immunodeficiency virus reverse transcriptase. , 1993, The Journal of biological chemistry.

[70]  S. Mizutani,et al.  Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of Rous Sarcoma Virus , 1970, Nature.

[71]  Wei Yang,et al.  Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription. , 2007, Molecular cell.

[72]  S. Sharma,et al.  Nucleotide-induced stable complex formation by HIV-1 reverse transcriptase. , 1997, Biochemistry.

[73]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[74]  H. Gross,et al.  Localization of the Active Site of HIV-1 Reverse Transcriptase-associated RNase H Domain on a DNA Template Using Site-specific Generated Hydroxyl Radicals* , 1998, The Journal of Biological Chemistry.

[75]  K. Hertogs,et al.  Indolopyridones Inhibit Human Immunodeficiency Virus Reverse Transcriptase with a Novel Mechanism of Action , 2006, Journal of Virology.

[76]  J. Champoux,et al.  RNase H activity: structure, specificity, and function in reverse transcription. , 2008, Virus research.

[77]  M. Wainberg,et al.  Temporal Coordination between Initiation of HIV (+)-Strand DNA Synthesis and Primer Removal* , 1999, The Journal of Biological Chemistry.

[78]  F. Clavel,et al.  Long-Term Foscarnet Therapy Remodels Thymidine Analogue Mutations and Alters Resistance to Zidovudine and Lamivudine in HIV-1 , 2006, Antiviral therapy.

[79]  S. L. Le Grice,et al.  Nuclease footprinting of human immunodeficiency virus reverse transcriptase/tRNA(Lys-3) complexes. , 1993, The Journal of biological chemistry.

[80]  A. D. Clark,et al.  Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. , 1998, Journal of molecular biology.

[81]  R. Sousa,et al.  A model for the mechanism of polymerase translocation. , 1997, Journal of molecular biology.

[82]  J. Champoux,et al.  The sequence features important for plus strand priming by human immunodeficiency virus type 1 reverse transcriptase. , 1993, The Journal of biological chemistry.

[83]  J. G. Levin,et al.  Sequence and structural determinants required for priming of plus-strand DNA synthesis by the human immunodeficiency virus type 1 polypurine tract , 1996, Journal of virology.

[84]  C. Ehresmann,et al.  Binding and kinetic properties of HIV‐1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription. , 1996, The EMBO journal.

[85]  R. Bambara,et al.  Strand Displacement Synthesis in the Central Polypurine Tract Region of HIV-1 Promotes DNA to DNA Strand Transfer Recombination* , 1996, The Journal of Biological Chemistry.

[86]  L. Loeb,et al.  Synthesis of DNA by human immunodeficiency virus reverse transcriptase is preferentially blocked at template oligo(deoxyadenosine) tracts. , 1990, The Journal of biological chemistry.

[87]  J. Champoux,et al.  Polypurine Tract Primer Generation and Utilization by Moloney Murine Leukemia Virus Reverse Transcriptase* , 1999, The Journal of Biological Chemistry.

[88]  A. D. Clark,et al.  Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. , 2007, Journal of molecular biology.

[89]  J. DeStefano,et al.  Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled. , 1991, The Journal of biological chemistry.

[90]  S. L. Le Grice,et al.  Using pyrrolo-deoxycytosine to probe RNA/DNA hybrids containing the human immunodeficiency virus type-1 3' polypurine tract. , 2004, Nucleic acids research.

[91]  E. Furfine,et al.  Reverse transcriptase.RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. , 1991, The Journal of biological chemistry.

[92]  H. Buc,et al.  HIV-1 reverse transcription. A termination step at the center of the genome. , 1994, Journal of molecular biology.

[93]  J. Arnold,et al.  Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases , 2007, Proceedings of the National Academy of Sciences.

[94]  Robert G. Brinson,et al.  High-resolution NMR analysis of the conformations of native and base analog substituted retroviral and LTR-retrotransposon PPT primers. , 2008, Chemistry & biology.

[95]  R. Hamatake,et al.  In Vitro Inhibition of Hepadnavirus Polymerases by the Triphosphates of BMS-200475 and Lobucavir , 1998, Antimicrobial Agents and Chemotherapy.

[96]  S. L. Le Grice,et al.  Substituting a Conserved Residue of the Ribonuclease H Domain Alters Substrate Hydrolysis by Retroviral Reverse Transcriptase* , 1997, The Journal of Biological Chemistry.

[97]  E. Furfine,et al.  Human immunodeficiency virus reverse transcriptase ribonuclease H: specificity of tRNA(Lys3)-primer excision. , 1991, Biochemistry.

[98]  J. DeStefano,et al.  Quantitative analysis of RNA cleavage during RNA-directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases. , 1994, Nucleic acids research.

[99]  S. L. Le Grice,et al.  'Binding, bending and bonding': polypurine tract-primed initiation of plus-strand DNA synthesis in human immunodeficiency virus. , 2004, The international journal of biochemistry & cell biology.

[100]  T. Steitz DNA Polymerases: Structural Diversity and Common Mechanisms* , 1999, The Journal of Biological Chemistry.