Numerical Solution for a Kind of Nonlinear Telegraph Equations Using Radial Basis Functions

[1]  J. Kolibal,et al.  A NUMERICAL METHOD FOR 1D TIME-DEPENDENT SCHRÖDINGER EQUATION USING RADIAL BASIS FUNCTIONS , 2013 .

[2]  Tongsong Jiang,et al.  The Method of Particular Solutions for Solving Inverse Problems of a Nonhomogeneous Convection-Diffusion Equation with Variable Coefficients , 2012 .

[3]  Tongsong Jiang,et al.  A meshless method based on RBFs method for nonhomogeneous backward heat conduction problem , 2010 .

[4]  Guirong Liu Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition , 2009 .

[5]  Mehdi Dehghan,et al.  A numerical method for solving the hyperbolic telegraph equation , 2008 .

[6]  Feng Gao,et al.  Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation , 2007, Appl. Math. Comput..

[7]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[8]  Mehdi Dehghan,et al.  Implicit Collocation Technique for Heat Equation with Non-Classic Initial Condition , 2006 .

[9]  Mehdi Dehghan,et al.  Parameter determination in a partial differential equation from the overspecified data , 2005, Math. Comput. Model..

[10]  YuanTong Gu,et al.  Boundary meshfree methods based on the boundary point interpolation methods , 2002 .

[11]  Parametric excitation of high-mode oscillations for a non-linear telegraph equation , 2000 .

[12]  Y. Shang EXPLICIT AND EXACT SOLUTIONS FOR A CLASS OF NONLINEAR WAVE EQUATIONS , 2000 .

[13]  Rafael Ortega,et al.  Bounded solutions of second order semilinear evolution equations and applications to the telegraph equation , 1999 .

[14]  Lai Shaoyong The asymptotic theory of semilinear perturbed telegraph equation and its application , 1997 .

[15]  E. Fan,et al.  THE SOLITARY WAVE SOLUTIONS FOR A CLASS OF NONLINEAR WAVE EQUATIONS , 1997 .

[16]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[17]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .