Threshold of primordial black hole formation against velocity dispersion in matter-dominated era

We study the effects of velocity dispersion on the formation of primordial black holes (PBHs) in a matter-dominated era. The velocity dispersion is generated through the nonlinear growth of perturbations and has the potential to impede the gravitational collapse and thereby the formation of PBHs. To make discussions clear, we consider two distinct length scales. The larger one is where gravitational collapse occurs which could lead to PBH formation, and the smaller one is where the velocity dispersion develops due to nonlinear interactions. We estimate the effect of the velocity dispersion on the PBH formation by comparing the free-fall timescale and the timescale for a particle to cross the collapsing region. As a demonstration, we consider a log-normal power spectrum for the initial density perturbation with the peak value σ 0 2 at a scale that corresponds to the larger scale. We find that the threshold value of the density perturbation δ̃ th at the horizon entry for the PBH formation scales as δ̃ th ∝ σ 0 2/5 for σ 0 ≪ 1.

[1]  J. Hidalgo,et al.  Production of PBHs from inflaton structures , 2022, Physical Review D.

[2]  Chul-Moon Yoo The Basics of Primordial Black Hole Formation and Abundance Estimation , 2022, Galaxies.

[3]  T. Papanikolaou Gravitational waves induced from primordial black hole fluctuations: the effect of an extended mass function , 2022, Journal of Cosmology and Astroparticle Physics.

[4]  T. Papanikolaou Toward the primordial black hole formation threshold in a time-dependent equation-of-state background , 2022, Physical Review D.

[5]  Chul-Moon Yoo,et al.  Simulation of primordial black holes with large negative non-Gaussianity , 2022, Journal of Cosmology and Astroparticle Physics.

[6]  K. Kohri,et al.  Cosmological 21-cm line observations to test scenarios of super-Eddington accretion on to black holes being seeds of high-redshifted supermassive black holes , 2022, Physical Review D.

[7]  J. Niemeyer,et al.  Gravitational collapse in the postinflationary Universe , 2021, Physical Review D.

[8]  Karim A. Malik,et al.  New mechanism for primordial black hole formation during reheating , 2021, Physical Review D.

[9]  I. Musco,et al.  Primordial black hole formation for an anisotropic perfect fluid: Initial conditions and estimation of the threshold , 2021, Physical Review D.

[10]  Eugene A. Lim,et al.  Primordial black hole formation with full numerical relativity , 2021, Journal of Cosmology and Astroparticle Physics.

[11]  Guillem Domènech,et al.  NANOGrav hints on planet-mass primordial black holes , 2020, Science China Physics, Mechanics & Astronomy.

[12]  M. Sasaki,et al.  Erratum: Gravitational wave constraints on the primordial black hole dominated early universe , 2021, Journal of Cosmology and Astroparticle Physics.

[13]  G. Domènech Scalar Induced Gravitational Waves Review , 2021, Universe.

[14]  Chul-Moon Yoo,et al.  Primordial black holes in peak theory with a non-Gaussian tail , 2021, Journal of Cosmology and Astroparticle Physics.

[15]  M. J. Williams,et al.  GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run , 2021, Physical Review D.

[16]  V. Takhistov,et al.  Exploring evaporating primordial black holes with gravitational waves , 2021, Physics Letters B.

[17]  T. Yanagida,et al.  NANOGrav Results and LIGO-Virgo Primordial Black Holes in Axionlike Curvaton Models. , 2021, Physical review letters.

[18]  A. Riotto,et al.  Threshold for primordial black holes. II. A simple analytic prescription , 2021 .

[19]  E. Kovetz,et al.  Multimessenger probes of inflationary fluctuations and primordial black holes , 2021 .

[20]  Q. Huang,et al.  A topic review on probing primordial black hole dark matter with scalar induced gravitational waves , 2021, iScience.

[21]  V. Vennin,et al.  Primordial black holes from metric preheating: mass fraction in the excursion-set approach , 2020, Journal of Cosmology and Astroparticle Physics.

[22]  M. Takada,et al.  Testing stochastic gravitational wave signals from primordial black holes with optical telescopes , 2020, 2010.02189.

[23]  R. K. Jain,et al.  Small scale induced gravitational waves from primordial black holes, a stringent lower mass bound, and the imprints of an early matter to radiation transition , 2020, 2009.10424.

[24]  A. Riotto,et al.  NANOGrav Hints to Primordial Black Holes as Dark Matter , 2020, 2009.08268.

[25]  H. Veermäe,et al.  Did NANOGrav See a Signal from Primordial Black Hole Formation? , 2020, Physical review letters.

[26]  J. Yokoyama,et al.  Constraints on primordial black holes , 2020, Reports on progress in physics. Physical Society.

[27]  J. Niemeyer,et al.  Gravitational Collapse in the Post-Inflationary Universe , 2021 .

[28]  V. Vennin,et al.  Gravitational waves from a universe filled with primordial black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[29]  K. Kohri,et al.  Solar-mass primordial black holes explain NANOGrav hint of gravitational waves , 2020 .

[30]  Stephen R. Taylor,et al.  The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background , 2020, The Astrophysical Journal Letters.

[31]  K. Kohri,et al.  Abundance of primordial black holes in peak theory for an arbitrary power spectrum , 2020, Progress of Theoretical and Experimental Physics.

[32]  B. Carr,et al.  Primordial Black Holes as Dark Matter: Recent Developments , 2020, 2006.02838.

[33]  D. Hooper,et al.  Hot Gravitons and Gravitational Waves From Kerr Black Holes in the Early Universe. , 2020, 2004.00618.

[34]  T. Yanagida,et al.  Gravitational wave production right after a primordial black hole evaporation , 2020, Physical Review D.

[35]  V. Poulin,et al.  Cosmic microwave background bounds on primordial black holes including dark matter halo accretion , 2020, 2002.10771.

[36]  Jérôme Martin,et al.  Metric preheating and radiative decay in single-field inflation , 2020, Journal of Cosmology and Astroparticle Physics.

[37]  A. Escrivá,et al.  PBH in single field inflation: the effect of shape dispersion and non-Gaussianities , 2019, Journal of Cosmology and Astroparticle Physics.

[38]  R. Sheth,et al.  Universal threshold for primordial black hole formation , 2019, Physical Review D.

[39]  Jérôme Martin,et al.  Primordial black holes from the preheating instability in single-field inflation , 2019, Journal of Cosmology and Astroparticle Physics.

[40]  Chul-Moon Yoo,et al.  Abundance of primordial black holes with local non-Gaussianity in peak theory , 2019, Journal of Cosmology and Astroparticle Physics.

[41]  A. Marcos-Caballero,et al.  Primordial black hole formation with non-Gaussian curvature perturbations , 2019, Journal of Cosmology and Astroparticle Physics.

[42]  K. Kohri,et al.  Enhancement of gravitational waves induced by scalar perturbations due to a sudden transition from an early matter era to the radiation era , 2019, Journal of Physics: Conference Series.

[43]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[44]  M. Takada,et al.  Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events , 2019, Physical Review D.

[45]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[46]  R. Cai,et al.  Gravitational Waves Induced by Non-Gaussian Scalar Perturbations. , 2018, Physical review letters.

[47]  I. Musco Threshold for primordial black holes: Dependence on the shape of the cosmological perturbations , 2018, Physical Review D.

[48]  C. Germani,et al.  Abundance of Primordial Black Holes Depends on the Shape of the Inflationary Power Spectrum. , 2018, Physical review letters.

[49]  K. Kohri,et al.  Effect of inhomogeneity on primordial black hole formation in the matter dominated era , 2018, Physical Review D.

[50]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[51]  K. Kohri,et al.  Primordial black hole abundance from random Gaussian curvature perturbations and a local density threshold , 2018, Progress of Theoretical and Experimental Physics.

[52]  K. Kohri,et al.  Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations , 2018, Physical Review D.

[53]  J. Espinosa,et al.  A cosmological signature of the SM Higgs instability: gravitational waves , 2018, Journal of Cosmology and Astroparticle Physics.

[54]  K. Kohri,et al.  Primordial black hole dark matter and LIGO/Virgo merger rate from inflation with running spectral indices: formation in the matter- and/or radiation-dominated universe , 2018, Classical and Quantum Gravity.

[55]  Takahiro Tanaka,et al.  Primordial black holes—perspectives in gravitational wave astronomy , 2018, 1801.05235.

[56]  V. Takhistov,et al.  Primordial black holes from inflaton fragmentation into oscillons , 2018, Physical Review D.

[57]  J. Silk,et al.  Primordial black holes as generators of cosmic structures , 2018, 1801.00672.

[58]  K. Nakao,et al.  Spins of primordial black holes formed in the matter-dominated phase of the Universe , 2017, 1707.03595.

[59]  J. Yokoyama,et al.  Supermassive black holes formed by direct collapse of inflationary perturbations , 2016, 1609.02245.

[60]  K. Nakao,et al.  PRIMORDIAL BLACK HOLE FORMATION IN THE MATTER-DOMINATED PHASE OF THE UNIVERSE , 2016, 1609.01588.

[61]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[62]  J. Garc'ia-Bellido,et al.  The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO , 2016, 1603.05234.

[63]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[64]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[65]  F. Kühnel,et al.  Effects of critical collapse on primordial black-hole mass spectra , 2015, 1512.00488.

[66]  Chul-Moon Yoo,et al.  Cosmological long-wavelength solutions and primordial black hole formation , 2015, 1503.03934.

[67]  K. Kohri,et al.  Testing scenarios of primordial black holes being the seeds of supermassive black holes by ultracompact minihalos and CMB $\mu$-distortions , 2014, 1405.5999.

[68]  J. Yokoyama,et al.  Identifying the most crucial parameters of the initial curvature profile for primordial black hole formation , 2013, 1310.3007.

[69]  K. Kohri,et al.  Threshold of primordial black hole formation , 2013, 1309.4201.

[70]  J. Miller,et al.  Primordial black hole formation in the early universe: critical behaviour and self-similarity , 2012, 1201.2379.

[71]  T. Yanagida,et al.  Primordial seeds of supermassive black holes , 2012, 1202.3848.

[72]  R. Genzel,et al.  The galactic center massive black hole and nuclear star cluster , 2010, 1006.0064.

[73]  J. Yokoyama,et al.  Gravitational-wave constraints on abundance of primordial black holes , 2010 .

[74]  J. Yokoyama,et al.  New cosmological constraints on primordial black holes , 2009, 0912.5297.

[75]  M. Khlopov Primordial black holes , 2007, 0801.0116.

[76]  R. Genzel,et al.  THE ORBIT OF THE STAR S2 AROUND SGR A* FROM VERY LARGE TELESCOPE AND KECK DATA , 2009, 0910.3069.

[77]  D. Wands,et al.  Gravitational waves from an early matter era , 2009, 0901.0989.

[78]  J. Yokoyama,et al.  Gravitational-wave background as a probe of the primordial black-hole abundance. , 2008, Physical review letters.

[79]  A. Polnarev,et al.  Primordial black hole formation in the radiative era: investigation of the critical nature of the collapse , 2008, 0811.1452.

[80]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[81]  P. Steinhardt,et al.  Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations , 2007, hep-th/0703290.

[82]  P. Steinhardt,et al.  Primordial Black Hole Baryogenesis , 2007, hep-th/0703250.

[83]  D. Wands,et al.  Cosmological gravitational wave background from primordial density perturbations , 2006, gr-qc/0612013.

[84]  A. Polnarev,et al.  Curvature profiles as initial conditions for primordial black hole formation , 2006, gr-qc/0605122.

[85]  L. Rezzolla,et al.  Computations of primordial black-hole formation , 2004, gr-qc/0412063.

[86]  H. Brück Cosmology , 1951, Peirce's Pragmatism.

[87]  M. Shibata,et al.  Black hole formation in the Friedmann universe: Formulation and computation in numerical relativity , 1999, gr-qc/9905064.

[88]  A. Liddle,et al.  Critical collapse and the primordial black hole initial mass function , 1999, astro-ph/9901268.

[89]  J. Yokoyama Cosmological constraints on primordial black holes produced in the near-critical gravitational collapse , 1998, gr-qc/9804041.

[90]  J. Niemeyer,et al.  Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes , 1997, astro-ph/9709072.

[91]  Copeland,et al.  Baryogenesis in extended inflation. II. Baryogenesis via primordial black holes. , 1990, Physical review. D, Particles and fields.

[92]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[93]  M. Khlopov,et al.  Cosmology, primordial black holes, and supermassive particles , 1985 .

[94]  M. Khlopov,et al.  Primordial black holes as a cosmological test of grand unification , 1980 .

[95]  F. Wilczek,et al.  Matter-antimatter accounting, thermodynamics, and black-hole radiation , 1979 .

[96]  B. Carr The Primordial black hole mass spectrum , 1975 .

[97]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[98]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[99]  K. Thorne Nonspherical Gravitational Collapse--A Short Review , 1972 .

[100]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[101]  A. Doroshkevich Spatial structure of perturbations and origin of galactic rotation in fluctuation theory , 1970 .

[102]  Y. Zel’dovich Gravitational instability: An Approximate theory for large density perturbations , 1969 .

[103]  Y. Zel’dovich,et al.  The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model , 1966 .

[104]  F. Shu,et al.  The gravitational collapse of a uniform spheroid. , 1965 .