Pleomorphic adenomas and mucoepidermoid carcinomas of the breast are underpinned by fusion genes

[1]  J. Reis-Filho,et al.  Pleomorphic adenomas and mucoepidermoid carcinomas of the breast are underpinned by fusion genes , 2020, npj Breast Cancer.

[2]  J. Reis-Filho,et al.  Identification of recurrent FHL2-GLI2 oncogenic fusion in sclerosing stromal tumors of the ovary , 2020, Nature Communications.

[3]  F. Beca,et al.  Whole‐exome sequencing and RNA sequencing analyses of acinic cell carcinomas of the breast , 2019, Histopathology.

[4]  O. Mariani,et al.  The Genomic Landscape of Mucinous Breast Cancer. , 2019, Journal of the National Cancer Institute.

[5]  M. Ladanyi,et al.  Novel PLAG1 Gene Rearrangement Distinguishes a Subset of Uterine Myxoid Leiomyosarcoma From Other Uterine Myxoid Mesenchymal Tumors , 2019, The American journal of surgical pathology.

[6]  R. Eils,et al.  Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands , 2019, Nature Communications.

[7]  I. Ellis,et al.  Assessment of HMGA2 and PLAG1 rearrangements in breast adenomyoepitheliomas , 2019, npj Breast Cancer.

[8]  Yunni-Yi Chen,et al.  CRTC1–MAML2 fusion in mucoepidermoid carcinoma of the breast , 2018, Histopathology.

[9]  Tsuyoshi Saito,et al.  Clinicopathological effect of PLAG1 fusion genes in pleomorphic adenoma and carcinoma ex pleomorphic adenoma with special emphasis on histological features , 2018, Histopathology.

[10]  I. Ellis,et al.  Loss-of-function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors , 2018, Nature Communications.

[11]  I. Ellis,et al.  Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas , 2018, Nature Communications.

[12]  Ekta Khurana,et al.  MYBL1 rearrangements and MYB amplification in breast adenoid cystic carcinomas lacking the MYB–NFIB fusion gene , 2018, The Journal of pathology.

[13]  C. Maher,et al.  Genomic and transcriptomic heterogeneity in metaplastic carcinomas of the breast , 2017, npj Breast Cancer.

[14]  V. Eusebi,et al.  The morphological spectrum of salivary gland type tumours of the breast. , 2017, Pathology.

[15]  J. Reis-Filho,et al.  Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants , 2016, npj Breast Cancer.

[16]  R. Wilson,et al.  INTEGRATE: gene fusion discovery using whole genome and transcriptome data , 2016, Genome research.

[17]  M. Kitagawa Notch signalling in the nucleus: roles of Mastermind-like (MAML) transcriptional coactivators. , 2015, Journal of biochemistry.

[18]  N. Socci,et al.  Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity , 2015, Nature Biotechnology.

[19]  I. Ellis,et al.  The repertoire of somatic genetic alterations of acinic cell carcinomas of the breast: an exploratory, hypothesis‐generating study , 2015, The Journal of pathology.

[20]  O. Mariani,et al.  Metastatic breast carcinomas display genomic and transcriptomic heterogeneity , 2015, Modern Pathology.

[21]  A. Iafrate,et al.  Anchored multiplex PCR for targeted next-generation sequencing , 2014, Nature Medicine.

[22]  Simion I. Chiosea,et al.  Hotspot activating PRKD1 somatic mutations in polymorphous low-grade adenocarcinomas of the salivary glands , 2014, Nature Genetics.

[23]  Mikhail Shugay,et al.  Oncofuse: a computational framework for the prediction of the oncogenic potential of gene fusions , 2013, Bioinform..

[24]  Y. Okada,et al.  HMGA2 is a driver of tumor metastasis. , 2013, Cancer research.

[25]  G. Stenman Fusion Oncogenes in Salivary Gland Tumors: Molecular and Clinical Consequences , 2013, Head and Neck Pathology.

[26]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[27]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[28]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[29]  C. Fletcher,et al.  A subset of cutaneous and soft tissue mixed tumors are genetically linked to their salivary gland counterpart , 2012, Genes, chromosomes & cancer.

[30]  Weixian Lu,et al.  Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1 , 2011, Nature Structural &Molecular Biology.

[31]  Z. Arikanoglu,et al.  Mucoepidermoid Carcinoma in a Breast Affected by Burn Scars: Comprehensive Literature Review and Case Report , 2011, Breast Care.

[32]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[33]  A. Børresen-Dale,et al.  Identification of fusion genes in breast cancer by paired-end RNA-sequencing , 2011, Genome Biology.

[34]  G. Stenman,et al.  New tricks from an old oncogene , 2010, Cell cycle.

[35]  B. Perez-Ordonez,et al.  Mammary Analogue Secretory Carcinoma of Salivary Glands, Containing the ETV6-NTRK3 Fusion Gene: A Hitherto Undescribed Salivary Gland Tumor Entity , 2010, The American journal of surgical pathology.

[36]  H. Horlings,et al.  Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck , 2009, Proceedings of the National Academy of Sciences.

[37]  J. Lennerz,et al.  Mucoepidermoid Carcinoma of the Cervix: Another Tumor With the t(11;19)-associated CRTC1-MAML2 Gene Fusion , 2009, The American journal of surgical pathology.

[38]  Jörn Bullerdiek,et al.  A new type of MAML2 fusion in mucoepidermoid carcinoma , 2008, Genes, chromosomes & cancer.

[39]  A. Fusco,et al.  Roles of HMGA proteins in cancer , 2007, Nature Reviews Cancer.

[40]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[41]  A. Reis,et al.  WIF1, an inhibitor of the Wnt pathway, is rearranged in salivary gland tumors , 2007, Genes, chromosomes & cancer.

[42]  F. Kaye,et al.  Sustained expression of Mect1-Maml2 is essential for tumor cell growth in salivary gland cancers carrying the t(11;19) translocation , 2006, Oncogene.

[43]  L. Szekely,et al.  Molecular classification of mucoepidermoid carcinomas—Prognostic significance of the MECT1–MAML2 fusion oncogene , 2006, Genes, chromosomes & cancer.

[44]  W. Dupont,et al.  Adenomyoepithelioma: Clinical, Histologic, and Immunohistologic Evaluation of a Series of Related Lesions , 2005, The American journal of surgical pathology.

[45]  Loren Miraglia,et al.  TORCs: transducers of regulated CREB activity. , 2003, Molecular cell.

[46]  S. Lakhani,et al.  Salivary gland-like tumours of the breast: surgical and molecular pathology , 2003, Journal of clinical pathology.

[47]  G. Tonon,et al.  t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway , 2003, Nature Genetics.

[48]  P. Sorensen,et al.  Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. , 2002, Cancer cell.

[49]  J. Nathans,et al.  A new secreted protein that binds to Wnt proteins and inhibits their activites , 1999, Nature.

[50]  W. V. D. Van de Ven,et al.  Conserved mechanism of PLAG1 activation in salivary gland tumors with and without chromosome 8q12 abnormalities: identification of SII as a new fusion partner gene. , 1999, Cancer research.

[51]  K. Kas,et al.  Promoter swapping between the genes for a novel zinc finger protein and β-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations , 1997, Nature Genetics.