On density of subgraphs of Cartesian products

In this paper, we extend two classical results about the density of subgraphs of hypercubes to subgraphs $G$ of Cartesian products $G_1\times\cdots\times G_m$ of arbitrary connected graphs. Namely, we show that $\frac{|E(G)|}{|V(G)|}\le \lceil 2\max\{ \text{dens}(G_1),\ldots,\text{dens}(G_m)\} \rceil\log|V(G)|$, where $\text{dens}(H)$ is the maximum ratio $\frac{|E(H')|}{|V(H')|}$ over all subgraphs $H'$ of $H$. We introduce the notions of VC-dimension $\text{VC-dim}(G)$ and VC-density $\text{VC-dens}(G)$ of a subgraph $G$ of a Cartesian product $G_1\times\cdots\times G_m$, generalizing the classical Vapnik-Chervonenkis dimension of set-families (viewed as subgraphs of hypercubes). We prove that if $G_1,\ldots,G_m$ belong to the class ${\mathcal G}(H)$ of all finite connected graphs not containing a given graph $H$ as a minor, then for any subgraph $G$ of $G_1\times\cdots\times G_m$ a sharper inequality $\frac{|E(G)|}{|V(G)|}\le \text{VC-dim}(G)\alpha(H)$ holds, where $\alpha(H)$ is the density of the graphs from ${\mathcal G}(H)$. We refine and sharpen those two results to several specific graph classes. We also derive upper bounds (some of them polylogarithmic) for the size of adjacency labeling schemes of subgraphs of Cartesian products.

[1]  Hans-Jürgen Bandelt,et al.  Combinatorics of lopsided sets , 2006, Eur. J. Comb..

[2]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[3]  Béla Bollobás,et al.  Defect Sauer Results , 1995, J. Comb. Theory A.

[4]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[5]  George Papageorgiou,et al.  The Complexity of Cubical Graphs , 1985, Inf. Control..

[6]  David Haussler,et al.  Predicting {0,1}-functions on randomly drawn points , 1988, COLT '88.

[7]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[8]  Noga Alon,et al.  Colorings and orientations of graphs , 1992, Comb..

[9]  Amos Fiat,et al.  VC-Dimension and Shortest Path Algorithms , 2011, ICALP.

[10]  Moni Naor,et al.  Implicit Representation of Graphs , 1992, SIAM J. Discret. Math..

[11]  Victor Chepoi,et al.  Covering Planar Graphs with a Fixed Number of Balls , 2007, Discret. Comput. Geom..

[12]  Marc Chastand,et al.  Fiber-complemented graphs -- I: structure and invariant subgraphs , 2001, Discret. Math..

[13]  Peter Winkler,et al.  Vertex-to-vertex pursuit in a graph , 1983, Discret. Math..

[14]  S. Bezrukov Edge Isoperimetric Problems on Graphs , 2007 .

[15]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[16]  L. H. Harper Optimal Assignments of Numbers to Vertices , 1964 .

[17]  Victor Chepoi,et al.  Bucolic Complexes , 2012, 1202.1149.

[18]  H. Bandelt,et al.  Metric graph theory and geometry: a survey , 2006 .

[19]  Gerhard J. Woeginger,et al.  The VC-dimension of Set Systems Defined by Graphs , 1997, Discret. Appl. Math..

[20]  Colin Cooper,et al.  The vapnik-chervonenkis dimension of a random graph , 1995, Discret. Math..

[21]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[22]  R. Graham,et al.  On isometric embeddings of graphs , 1985 .

[23]  Manfred K. Warmuth,et al.  Unlabeled Compression Schemes for Maximum Classes, , 2007, COLT.

[24]  Sergey V. Shpectorov,et al.  On Scale Embeddings of Graphs into Hypercubes , 1993, Eur. J. Comb..

[25]  Michael Randolph Garey,et al.  On cubical graphs , 1975 .

[26]  Zoltán Füredi,et al.  Traces of finite sets: extremal problems and geometric applications , 1994 .

[27]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[28]  L. H. Harper Global Methods for Combinatorial Isoperimetric Problems , 2004 .

[29]  Peter L. Bartlett,et al.  Shifting: One-inclusion mistake bounds and sample compression , 2009, J. Comput. Syst. Sci..

[30]  R. Pollack,et al.  Surveys on discrete and computational geometry : twenty years later : AMS-IMS-SIAM Joint Summer Research Conference, June 18-22, 2006, Snowbird, Utah , 2008 .

[31]  V. Chepoi,et al.  Weakly Modular Graphs and Nonpositive Curvature , 2014, Memoirs of the American Mathematical Society.

[32]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[33]  Victor Chepoi,et al.  On density of subgraphs of halved cubes , 2019, Eur. J. Comb..

[34]  David Haussler,et al.  Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.

[35]  D. Pollard Convergence of stochastic processes , 1984 .

[36]  J. Lawrence Lopsided sets and orthant-intersection by convex sets , 1983 .

[37]  David Haussler,et al.  A Graph-theoretic Generalization of the Sauer-Shelah Lemma , 1998, Discret. Appl. Math..

[38]  Philip M. Long,et al.  A Generalization of Sauer's Lemma , 1995, J. Comb. Theory A.

[39]  B. Natarajan On learning sets and functions , 2004, Machine Learning.

[40]  Ronald L. Graham,et al.  ON PRIMITIVE GRAPHS AND OPTIMAL VERTEX ASSIGNMENTS , 1970 .

[41]  Mathias Bæk Tejs Knudsen,et al.  Optimal Induced Universal Graphs and Adjacency Labeling for Trees , 2015, FOCS.

[42]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[43]  Victor Chepoi,et al.  Retracts of Products of Chordal Graphs , 2013, J. Graph Theory.