Numerical simulation of isotope production for positron emission tomography with laser-accelerated ions

The experimental demonstration of laser acceleration of ions to multi-MeV energies with short, intense laser pulses has spurred the prospect of using this ion source for medical isotope production. Using numerical models for laser-plasma interaction and ion acceleration, then for ion transport and isotope production, we compute the isotope yields that could be expected from such sources, and their variations with interaction parameters such as target thickness and laser intensity. Using 36fs, 4×1020W∕cm2 pulses at kilohertz repetition rate, more than 100GBq of F18 are expected after irradiation for 1h.

[1]  K. Flippo,et al.  Laser acceleration of quasi-monoenergetic MeV ion beams , 2006, Nature.

[2]  K.-U. Amthor,et al.  Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets , 2006, Nature.

[3]  P. Audebert,et al.  Laser-driven proton scaling laws and new paths towards energy increase , 2006 .

[4]  J. Nye,et al.  Radiohalogen targetry at the university of wisconsin , 2005 .

[5]  Erik Lefebvre,et al.  Proton acceleration mechanisms in high-intensity laser interaction with thin foils , 2005 .

[6]  A Nikroo,et al.  Comparison of laser ion acceleration from the front and rear surfaces of thin foils. , 2005, Physical review letters.

[7]  R. P. Singhal,et al.  High power laser production of short-lived isotopes for positron emission tomography , 2004 .

[8]  J. Meyer-ter-Vehn,et al.  Influence of the laser prepulse on proton acceleration in thin-foil experiments. , 2004, Physical review letters.

[9]  S Meyroneinc,et al.  Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. , 2004, Physical review letters.

[10]  O Willi,et al.  Multi-MeV proton source investigations in ultraintense laser-foil interactions. , 2004, Physical review letters.

[11]  S. Fritzler,et al.  Proton beams generated with high-intensity lasers: Applications to medical isotope production , 2003 .

[12]  R. P. Singhal,et al.  Laser-driven photo-transmutation of 129I—a long-lived nuclear waste product , 2003 .

[13]  G. Malka,et al.  Electron and photon production from relativistic laser–plasma interactions , 2003 .

[14]  R. P. Singhal,et al.  Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers , 2003, Science.

[15]  V Malka,et al.  Relativistic electron generation in interactions of a 30 TW laser pulse with a thin foil target. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  S. V. Bulanov,et al.  Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. , 2002, Physical review letters.

[17]  K. Witte,et al.  MeV ion jets from short-pulse-laser interaction with thin foils. , 2002, Physical review letters.

[18]  Alex Hermanne,et al.  Charged-Particle Cross Section Database for Medical Radioisotope Production , 2002 .

[19]  A. E. Dangor,et al.  Laser generation of proton beams for the production of short-lived positron emitting radioisotopes , 2001 .

[20]  Gerard Mourou,et al.  Laser-triggered ion acceleration and table top isotope production , 2001 .

[21]  A. E. Dangor,et al.  Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions , 2001 .

[22]  Edward B. Clark,et al.  Energetic heavy-Ion and proton generation from ultraintense laser-plasma interactions with solids , 2000, Physical review letters.

[23]  Gu,et al.  Forward ion acceleration in thin films driven by a high-intensity laser , 2000, Physical review letters.

[24]  Phillips,et al.  Photonuclear fission from high energy electrons from ultraintense laser-solid interactions , 2000, Physical review letters.

[25]  Clark,et al.  Photonuclear physics when a multiterawatt laser pulse interacts with solid targets , 2000, Physical review letters.

[26]  J. Ziegler Stopping of energetic light ions in elemental matter , 1999 .

[27]  M. Lagunas-Solar,et al.  CYCLOTRON PRODUCTION OF PET RADIONUCLIDES : NO-CARRIER-ADDED FLUORINE-18 WITH HIGH-ENERGY PROTONS ON NATURAL NEON GAS TARGETS , 1995 .

[28]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[29]  M. J. Berger,et al.  Density effect for the ionization loss of charged particles in various substances , 1966 .