Non-uniform packings

We generalize the classical notion of packing a set by balls with identical radii to the case where the radii may be different. The largest number of such balls that fit inside the set without overlapping is called its {\em non-uniform packing number}. We show that the non-uniform packing number can be upper-bounded in terms of the {\em average} radius of the balls, resulting in bounds of the familiar classical form.

[1]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[2]  Trung Le,et al.  Approximation Vector Machines for Large-scale Online Learning , 2016, J. Mach. Learn. Res..

[3]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[4]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[5]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[6]  Lee-Ad Gottlieb,et al.  Functions with average smoothness: structure, algorithms, and learning , 2020, COLT.

[7]  Yi Li,et al.  Using the doubling dimension to analyze the generalization of learning algorithms , 2009, J. Comput. Syst. Sci..

[8]  Richard Cole,et al.  Searching dynamic point sets in spaces with bounded doubling dimension , 2006, STOC '06.

[10]  S. Ana,et al.  Topology , 2018, International Journal of Mathematics Trends and Technology.

[11]  Yuan Zhou Introduction to Coding Theory , 2010 .

[12]  J. Wellner,et al.  High Dimensional Probability III , 2003 .

[13]  Robert Krauthgamer,et al.  Navigating nets: simple algorithms for proximity search , 2004, SODA '04.

[14]  V. Koltchinskii,et al.  High Dimensional Probability , 2006, math/0612726.

[15]  Sanjoy Dasgupta,et al.  A tree-based regressor that adapts to intrinsic dimension , 2012, J. Comput. Syst. Sci..

[16]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[17]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[18]  Lee-Ad Gottlieb,et al.  Efficient Classification for Metric Data , 2014, IEEE Trans. Inf. Theory.

[19]  Walter Kern,et al.  Note on non-uniform bin packing games , 2014, Discret. Appl. Math..

[20]  Lee-Ad Gottlieb,et al.  Proximity Algorithms for Nearly-Doubling Spaces , 2010, APPROX-RANDOM.

[21]  Lee-Ad Gottlieb,et al.  The traveling salesman problem: low-dimensionality implies a polynomial time approximation scheme , 2011, STOC '12.

[22]  Martin J. Wainwright,et al.  High-Dimensional Statistics , 2019 .

[23]  Aryeh Kontorovich,et al.  Universal Bayes Consistency in Metric Spaces , 2019, 2020 Information Theory and Applications Workshop (ITA).

[24]  Lee-Ad Gottlieb,et al.  Near-Optimal Sample Compression for Nearest Neighbors , 2014, IEEE Transactions on Information Theory.

[25]  Lee-Ad Gottlieb,et al.  Adaptive metric dimensionality reduction , 2013, Theor. Comput. Sci..

[26]  Sariel Har-Peled,et al.  Geometric Packing under Nonuniform Constraints , 2017, SIAM J. Comput..