Long-Wave Elastic Anisotropy Produced by Horizontal Layering

A horizontally layered inhomogeneous medium, isotropic or transversely isotropic, is considered, whose properties are constant or nearly so when averaged over some vertical height l′. For waves longer than l′ the medium is shown to behave like a homogeneous, or nearly homogeneous, transversely isotropic medium whose density is the average density and whose elastic coefficients are algebraic combinations of averages of algebraic combinations of the elastic coefficients of the original medium. The nearly homogeneous medium is said to be ‘long-wave equivalent’ to the original medium. Conditions on the five elastic coefficients of a homogeneous transversely isotropic medium are derived which are necessary and sufficient for the medium to be ‘long-wave equivalent’ to a horizontally layered isotropic medium. Further conditions are also derived which are necessary and sufficient for the homogeneous medium to be ‘long-wave equivalent’ to a horizontally layered isotropic medium consisting of only two different homogeneous isotropic materials. Except in singular cases, if the latter two-layered medium exists at all, its proportions and elastic coefficients are uniquely determined by the elastic coefficients of the homogeneous transversely isotropic medium. The observed variations in crustal P-wave velocity with depth, obtained from well logs, are shown to be large enough to explain some of the observed crustal anisotropies as due to layering of isotropic material.