Extending Downward Collapse from 1-versus-2 Queries to j-versus-j+1 Queries

The above figure shows some classes from the boolean and (truth-table) bounded-query hierarchies. It is well-known that if either collapses at a given level, then all higher levels collapse to that same level. This is a standard "upward translation of equality" that has been known for over a decade. The issue of whether these hierarchies can translate equality downwards has proven vastly more challenging. In particular, with regard to the figure above, consider the following claim: Pm-ttΣkp = Pm+1-ttΣkp ⇒ DIFFm(Sigma;kp) = coDIFFm(Sigma;kp) = BH(Sigma;kp). This claim, if true, says that equality translates downwards between levels of the bounded-query hierarchy and the boolean hierarchy levels that (before the fact) are immediately below them. Until recently, it was not known whether (**) ever held, except in the trivial m = 0 case. Then Hemaspaandra et al. [15] proved that (**) holds for all m, whenever k > 2. For the case k = 2, Buhrman and Fortnow [5] then showed that (**) holds when m = 1. In this paper, we prove that for the case k = 2, (**) holds for all values of m. As Buhrman and Fortnow showed that no relativizable technique can prove "for k = 1, (**) holds for all m," our achievement of the k = 2 case is unlikely to be strengthened to k = 1 any time in the foreseeable future. The new downward translation we obtain tightens the collapse in the polynomial hierarchy implied by a collapse in the bounded-query hierarchy of the second level of the polynomial hierarchy.

[1]  Edith Hemaspaandra,et al.  A Downward Collapse within the Polynomial Hierarchy , 1999, SIAM J. Comput..

[2]  Klaus W. Wagner,et al.  On boolean lowness and boolean highness , 2001, Theor. Comput. Sci..

[3]  Lance Fortnow,et al.  Two Queries , 1999, J. Comput. Syst. Sci..

[4]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[5]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[6]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[7]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[8]  Gerd Wechsung,et al.  On the Boolean closure of NP , 1985, FCT.

[9]  Eric Allender,et al.  Downward Translations of Equality , 1990, Theor. Comput. Sci..

[10]  Edith Hemaspaandra,et al.  Translating Equality Downwards , 1999, ArXiv.

[11]  Victor L. Selivanov Two Refinements of the Polynomial Hierarcht , 1994, STACS.

[12]  Klaus W. Wagner A Note on Parallel Queries and the Symmetric-Difference Hierarchy , 1998, Inf. Process. Lett..

[13]  Jim Kadin The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..

[14]  Neil Immerman,et al.  Sparse Sets in NP-P: EXPTIME versus NEXPTIME , 1985, Inf. Control..

[15]  Edith Hemaspaandra,et al.  What's up with downward collapse: using the easy-hard technique to link Boolean and polynomial hierarchy collapses , 1998, SIGA.

[16]  Edith Hemaspaandra,et al.  An Introduction to Query Order , 1997, Bull. EATCS.

[17]  Pankaj Rohatgi Saving Queries with Randomness , 1995, J. Comput. Syst. Sci..

[18]  Victor L. Selivanov,et al.  Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.

[19]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[20]  Juris Hartmanis,et al.  The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..

[21]  R. Beigel,et al.  Bounded Queries to SAT and the Boolean Hierarchy , 1991, Theor. Comput. Sci..

[22]  Lane A. Hemaspaandra,et al.  Defying Upward and Downward Separation , 1993, Inf. Comput..

[23]  Jörg Rothe,et al.  Upward Separation for FewP and Related Classes , 1994, Inf. Process. Lett..

[24]  Richard Chang,et al.  The Boolean Hierarchy and the Polynomial Hierarchy: A Closer Connection , 1996, SIAM J. Comput..

[25]  Edith Hemaspaandra,et al.  Downward Collapse from a Weaker Hypothesis , 1998, ArXiv.