Theoretical Limits of Photovoltaic Conversion and New‐Generation Solar Cells

[1]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[2]  M. Green Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells , 2001 .

[3]  P. Würfel,et al.  Thermodynamic limitations to solar energy conversion , 2002 .

[4]  J Wu,et al.  Diluted II-VI oxide semiconductors with multiple band gaps. , 2003, Physical review letters.

[5]  V. Klimov Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication , 2006 .

[6]  Antonio Luque,et al.  A metallic intermediate band high efficiency solar cell , 2001 .

[7]  G. L. Araújo,et al.  Limiting efficiencies of GaAs solar cells , 1990 .

[8]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[9]  Werner,et al.  Novel optimization principles and efficiency limits for semiconductor solar cells. , 1994, Physical review letters.

[10]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[11]  Jamie D. Phillips,et al.  Intermediate-band photovoltaic solar cell based on ZnTe:O , 2009 .

[12]  Martin A. Green,et al.  Particle conservation in the hot‐carrier solar cell , 2005 .

[13]  Antonio Luque,et al.  Electron―phonon energy transfer in hot―carrier solar cells , 2010 .

[14]  R. M. Swanson,et al.  27.5-percent silicon concentrator solar cells , 1986, IEEE Electron Device Letters.

[15]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[16]  Timothy W. Schmidt,et al.  A molecular approach to the intermediate band solar cell: The symmetric case , 2008 .

[17]  Martin A. Green,et al.  Third generation photovoltaics: Ultra‐high conversion efficiency at low cost , 2001 .

[18]  A. Luque,et al.  Partial filling of a quantum dot intermediate band for solar cells , 2001 .

[19]  Antonio Luque,et al.  Ideal efficiency of monolithic, series‐connected multijunction solar cells , 2002 .

[20]  M. Grätzel Dye-sensitized solar cells , 2003 .

[21]  A. N. Smirnov,et al.  Experimental and theoretical studies of phonons in hexagonal InN , 1999 .

[22]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[23]  Jerry Bernholc,et al.  Ab initio phonon dispersions of wurtzite AlN, GaN, and InN , 2000 .

[24]  Antonio Luque,et al.  Intermediate bands versus levels in non-radiative recombination , 2006 .

[25]  Antonio Luque,et al.  Entropy production in photovoltaic conversion , 1997 .

[26]  A. Luque,et al.  Light intensity enhancement by diffracting structures in solar cells , 2008 .

[27]  Jürgen H. Werner,et al.  Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells , 1993 .

[28]  Antonio Martí,et al.  Absolute limiting efficiencies for photovoltaic energy conversion , 1994 .

[29]  A. Luque,et al.  Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material , 2009 .

[30]  R. Schaller,et al.  Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. , 2006, Nano letters.

[31]  César Tablero,et al.  Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials , 2002 .

[32]  C. D. Farmer,et al.  Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. , 2006, Physical review letters.

[33]  A. Luque,et al.  Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux , 2002 .

[34]  G. L. Araújo,et al.  Limiting efficiencies for photovoltaic energy conversion in multigap systems , 1996 .

[35]  C. Riordan,et al.  Spectral solar irradiance data sets for selected terrestrial conditions , 1985 .

[36]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[37]  Martin A. Green,et al.  Limiting efficiency for current‐constrained two‐terminal tandem cell stacks , 2002 .

[38]  C. Stanley,et al.  General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence , 2004 .

[39]  J. Conesa,et al.  Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties. , 2008, Physical review letters.

[40]  P. Landsberg,et al.  Thermodynamic energy conversion efficiencies , 1980 .

[41]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[42]  J. Miñano,et al.  Design of three-dimensional nonimaging concentrators with inhomogeneous media , 1986 .

[43]  M. Green,et al.  Improving solar cell efficiencies by up-conversion of sub-band-gap light , 2002 .

[44]  A. Luque,et al.  Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell , 2004, IEEE Transactions on Electron Devices.

[45]  M. Bawendi,et al.  Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence , 2008, 0806.1966.

[46]  J. Mannhart,et al.  Dielectric properties and charge transport in the (Sr,La)NbO 3.5-x system , 2002 .

[47]  Antonio Luque,et al.  High efficiency and high concentration in photovoltaics , 1999 .

[48]  A. Luque,et al.  Intermediate band mobility in heavily titanium-doped silicon layers , 2009 .

[49]  Charles Howard Henry,et al.  Nonradiative Recombination at Deep Levels in GaAs and GaP by Lattice-Relaxation Multiphonon Emission , 1975 .

[50]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[51]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[52]  Antonio Luque,et al.  Limiting efficiency of coupled thermal and photovoltaic converters , 1999 .

[53]  Nikolai N. Ledentsov,et al.  AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs , 2009 .

[54]  Antonio Luque,et al.  Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells , 2005 .

[55]  A. Luque,et al.  Thermodynamics of solar energy conversion in novel structures , 2002 .

[56]  M. Green,et al.  Improving solar cell efficiencies by down-conversion of high-energy photons , 2002 .

[57]  P. Würfel,et al.  Solar energy conversion with hot electrons from impact ionisation , 1997 .

[58]  Carlos Algora,et al.  Lattice-Matched III–V Dual-Junction Solar Cells for Concentrations Around 1000 Suns , 2007 .

[59]  David P. Bour,et al.  Multiband GaNAsP quaternary alloys , 2006 .

[60]  J. Werner,et al.  Quantum efficiencies exceeding unity in silicon leading to novel selection principles for solar cell materials , 1994 .

[61]  J. Werner,et al.  Radiative efficiency limit of terrestrial solar cells with internal carrier multiplication , 1995 .

[62]  M. Bonn,et al.  Assessment of carrier-multiplication efficiency in bulk PbSe and PbS , 2009 .

[63]  A. De Vos,et al.  On the thermodynamic limit of photovoltaic energy conversion , 1981 .

[64]  R. Schaller,et al.  New aspects of carrier multiplication in semiconductor nanocrystals. , 2008, Accounts of chemical research.

[65]  A. Luque,et al.  Light absorption in the near field around surface plasmon polaritons , 2008 .

[66]  R. Lucena,et al.  Synthesis and Spectral Properties of Nanocrystalline V-Substituted In2S3, a Novel Material for More Efficient Use of Solar Radiation , 2008 .

[67]  R. T. Ross,et al.  Efficiency of hot-carrier solar energy converters , 1982 .

[68]  Chao Zhang,et al.  Electronic and thermal transport in hot carrier solar cells with low-dimensional contacts , 2008, Microelectron. J..