Proof of the ionization conjecture in a reduced Hartree-Fock model

SummaryThe ionization conjecture for atomic models states that the ionization energy and maximal excess charge are bounded by constants independent of the nuclear charge. We prove this for the Hartree-Fock model without the exchange term.

[1]  C. Fefferman,et al.  Asymptotic neutrality of large ions , 1990 .

[2]  M. Ruskai Absence of discrete spectrum in highly negative ions , 1982 .

[3]  E. Lieb,et al.  Communications in Mathematical Physics © Springer-Verlag 1988 Approximate Neutrality of Large-Z Ions* , 2022 .

[4]  E. Lieb The Number of Bound States of One-Body Schroedinger Operators and the Weyl Problem (代数解析学の最近の発展) , 1979 .

[5]  J. Alexander,et al.  Theory and Methods: Critical Essays in Human Geography , 2008 .

[6]  I. Sigal How many electrons can a nucleus bind , 1984 .

[7]  J. P. Solovej Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules , 1990 .

[8]  C. Fefferman,et al.  On the energy of a large atom , 1990 .

[9]  I. Sigal Geometric methods in the quantum many-body problem. Nonexistence of very negative ions , 1982 .

[10]  D. Hartree The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[12]  E. Lieb,et al.  The Thomas-Fermi theory of atoms, molecules and solids , 1977 .

[13]  J. P. Solovej,et al.  Bound on the ionization energy of large atoms , 1990 .

[14]  Barry Simon,et al.  The Hartree-Fock theory for Coulomb systems , 1977 .

[15]  E. Lieb Bound on the maximum negative ionization of atoms and molecules , 1984 .

[16]  Elliott H. Lieb,et al.  Variational principle for many-fermion systems , 1981 .

[17]  W. Thirring A lower bound with the best possible constant for Coulomb Hamiltonians , 1981 .

[18]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  A lower bound for Coulomb energies , 1979 .

[20]  R. Weikard,et al.  On some basic properties of density functionals for angular momentum channels , 1986 .