Active Huygens’ Box: Arbitrary Electromagnetic Wave Generation With an Electronically Controlled Metasurface

This work investigates the generation of arbitrary electromagnetic waveforms inside a geometrical area enclosed by an active metasurface. We introduce the Huygens’ box, where a region of space is enclosed by an active Huygens’ metasurface. We show that, upon generating the necessary electric and magnetic currents, we can create any desired electromagnetic field inside Huygens’ box. Using this method, we demonstrate, through simulation and experiment, the generation of traveling plane waves, a standing plane wave, and a Bessel wave inside a metallic cavity. These waves are generated using the same (reconfigurable) metasurface by aptly controlling the electronic excitations. By linear superposition of these unconventional traveling-wave “modes,” we experimentally demonstrate, for the first time, a subwavelength superoscillation focal spot formed without involving evanescent EM waves and without an accompanying region of exorbitantly high waveform energy. The Huygens’ box brings controlled waveform generation to an unprecedented level, with far-reaching implications to imaging, wireless communication, and medical therapy.

[1]  Mark R. Dennis,et al.  Roadmap on superoscillations , 2019, Journal of Optics.

[2]  A. Wong,et al.  Active Huygens' Box: Arbitrary Synthesis of EM Waves in Metallic Cavities , 2019, 2019 International Applied Computational Electromagnetics Society Symposium (ACES).

[3]  George V. Eleftheriades,et al.  Huygens’ metasurfaces from microwaves to optics: a review , 2018, Nanophotonics.

[4]  Chen Shen,et al.  Power flow–conformal metamirrors for engineering wave reflections , 2017, Science Advances.

[5]  Minseok Kim,et al.  Superresolution far-field imaging of complex objects using reduced superoscillating ripples , 2017 .

[6]  George V. Eleftheriades,et al.  Perfect Anomalous Reflection with a Bipartite Huygens’ Metasurface , 2017, 1709.04990.

[7]  George V. Eleftheriades,et al.  Broadband superoscillation brings a wave into perfect three-dimensional focus , 2017 .

[8]  A. Alú,et al.  Wave-front Transformation with Gradient Metasurfaces , 2016 .

[9]  Ana Díaz-Rubio,et al.  From the generalized reflection law to the realization of perfect anomalous reflectors , 2016, Science Advances.

[10]  G. Eleftheriades,et al.  Active Huygens' metasurfaces for RF waveform synthesis in a cavity , 2016, 2016 18th Mediterranean Electrotechnical Conference (MELECON).

[11]  George V. Eleftheriades,et al.  Huygens' metasurfaces via the equivalence principle: design and applications , 2016 .

[12]  Changtao Wang,et al.  Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing , 2015 .

[13]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[14]  Ariel Epstein,et al.  Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures , 2015, Nature Communications.

[15]  G. Eleftheriades,et al.  A simple active Huygens source for studying waveform synthesis with Huygens metasurfaces and antenna arrays , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[16]  George V. Eleftheriades,et al.  Superoscillations without Sidebands: Power-Efficient Sub-Diffraction Imaging with Propagating Waves , 2015, Scientific Reports.

[17]  George V. Eleftheriades,et al.  Optical Huygens' Metasurfaces with Independent Control of the Magnitude and Phase of the Local Reflection Coefficients , 2014 .

[18]  G. Eleftheriades,et al.  Polarization Control Using Tensor Huygens Surfaces , 2014, IEEE Transactions on Antennas and Propagation.

[19]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[20]  George V. Eleftheriades,et al.  Experimental Demonstration of Active Electromagnetic Cloaking , 2013 .

[21]  C. Pfeiffer,et al.  Cascaded metasurfaces for complete phase and polarization control , 2013 .

[22]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[23]  George V. Eleftheriades,et al.  An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit , 2013, Scientific Reports.

[24]  G. Eleftheriades,et al.  Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. , 2013, Optics express.

[25]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[26]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[27]  Andreas Tünnermann,et al.  Spatial and Spectral Light Shaping with Metamaterials , 2012, Advanced materials.

[28]  G. V. Eleftheriades,et al.  An Active Electromagnetic Cloak Using the Equivalence Principle , 2012, IEEE Antennas and Wireless Propagation Letters.

[29]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[30]  Yonina C. Eldar,et al.  Sparsity-based single-shot subwavelength coherent diffractive imaging , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[31]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[32]  Kwai-Man Luk,et al.  The Magnetoelectric Dipole—A Wideband Antenna for Base Stations in Mobile Communications , 2012, Proceedings of the IEEE.

[33]  G. Eleftheriades,et al.  Advances in Imaging Beyond the Diffraction Limit , 2012, IEEE Photonics Journal.

[34]  A. M. H. Wong,et al.  Superoscillatory Radar Imaging: Improving Radar Range Resolution Beyond Fundamental Bandwidth Limitations , 2012, IEEE Microwave and Wireless Components Letters.

[35]  A. Alú,et al.  Mantle cloaking using thin patterned metasurfaces , 2011 .

[36]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[37]  K. Dholakia,et al.  Enhanced two-point resolution using optical eigenmode optimized pupil functions , 2011 .

[38]  G. Eleftheriades,et al.  Sub-Wavelength Focusing at the Multi-Wavelength Range Using Superoscillations: An Experimental Demonstration , 2011, IEEE Transactions on Antennas and Propagation.

[39]  G. V. Eleftheriades,et al.  Temporal Pulse Compression Beyond the Fourier Transform Limit , 2011, IEEE Transactions on Microwave Theory and Techniques.

[40]  George V Eleftheriades,et al.  Adaptation of Schelkunoff's Superdirective Antenna Theory for the Realization of Superoscillatory Antenna Arrays , 2010, IEEE Antennas and Wireless Propagation Letters.

[41]  C. T. Chan,et al.  Exterior optical cloaking and illusions by using active sources: A boundary element perspective , 2009, 0908.2279.

[42]  G. Milton,et al.  Active exterior cloaking for the 2D Laplace and Helmholtz equations. , 2009, Physical review letters.

[43]  Jack Ng,et al.  Illusion optics: the optical transformation of an object into another object. , 2009, Physical review letters.

[44]  Yan Wang,et al.  Spatially shifted beam approach to subwavelength focusing. , 2008, Physical review letters.

[45]  N. Zheludev What diffraction limit? , 2008, Nature materials.

[46]  Anthony Grbic,et al.  Near-Field Plates: Subdiffraction Focusing with Patterned Surfaces , 2008, Science.

[47]  Nikolay I. Zheludev,et al.  Optical super-resolution through super-oscillations , 2007 .

[48]  D. Miller,et al.  On perfect cloaking. , 2006, Optics express.

[49]  P.J.S.G. Ferreira,et al.  Superoscillations: Faster Than the Nyquist Rate , 2006, IEEE Transactions on Signal Processing.

[50]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[51]  W. Menzel,et al.  A dual planar reflectarray with synthesized phase and amplitude distribution , 2005, IEEE Transactions on Antennas and Propagation.

[52]  C. Holloway,et al.  Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles , 2005, IEEE Transactions on Electromagnetic Compatibility.

[53]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[54]  김덕영 [신간안내] Computational Electrodynamics (the finite difference time - domain method) , 2001 .

[55]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[56]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[57]  Vaidman,et al.  Superpositions of time evolutions of a quantum system and a quantum time-translation machine. , 1990, Physical review letters.

[58]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[59]  E. Ash,et al.  Super-resolution Aperture Scanning Microscope , 1972, Nature.

[60]  E. Synge XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region , 1928 .

[61]  J. F. Springer,et al.  Pin-Hole Photography , 1920 .

[62]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[63]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[64]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[65]  S. A. Schelkunoff,et al.  Some equivalence theorems of electromagnetics and their application to radiation problems , 1936 .

[66]  H. Macdonald,et al.  The Integration of the Equations of Propagation of Electric Waves , 1912 .

[67]  Auguste Fresnel Memoire sur la diffraction de la lumiere , 1819 .