A multi-isotopic study reveals the palaeoecology of a sebecid from the Paleocene of Bolivia

[1]  Chengshan Wang,et al.  High terrestrial temperature in the low-latitude Nanxiong Basin during the Cretaceous-Paleogene boundary interval , 2023, Palaeogeography, Palaeoclimatology, Palaeoecology.

[2]  J. Boisserie,et al.  Limits of calcium isotopes diagenesis in fossil bone and enamel , 2023, Geochimica et Cosmochimica Acta.

[3]  G. Billet,et al.  Dental ontogeny in the early Paleocene placental mammal Alcidedorbignya inopinata (Pantodonta) from Tiupampa (Bolivia) , 2022, Geodiversitas.

[4]  J. Martin,et al.  Anatomy and Phylogeny of an Exceptionally Large Sebecid (Crocodylomorpha) from the Middle Eocene of Southern France , 2022, Journal of Vertebrate Paleontology.

[5]  Mathieu G. Faure-Brac,et al.  Paleohistological inferences of thermometabolic regimes in Notosuchia (Pseudosuchia: Crocodylomorpha) revisited , 2022, Paleobiology.

[6]  C. de Muizon,et al.  New material of Incadelphys antiquus (Pucadelphyda, Metatheria, Mammalia) from the early Palaeocene of Bolivia reveals phylogenetic affinities with enigmatic North and South American metatherians , 2022, Geodiversitas.

[7]  H. Ueckermann,et al.  Simultaneous analysis of stable and radiogenic strontium isotopes in reference materials, plants and modern tooth enamel , 2022, Chemical Geology.

[8]  J. Adrien,et al.  The neuroanatomy of Zulmasuchus querejazus (Crocodylomorpha, Sebecidae) and its implications for the paleoecology of sebecosuchians , 2021, Anatomical record.

[9]  Mathieu G. Faure-Brac,et al.  Combined paleohistological and isotopic inferences of thermometabolism in extinct Neosuchia, using Goniopholis and Dyrosaurus (Pseudosuchia: Crocodylomorpha) as case studies , 2021, Paleobiology.

[10]  E. al.,et al.  Contribution of orbital forcing and Deccan volcanism to global climatic and biotic changes across the Cretaceous-Paleogene boundary at Zumaia, Spain , 2021, Geology.

[11]  R. Cifelli,et al.  The "condylarths" (archaic Ungulata, Mammalia) from the early Palaeocene of Tiupampa (Bolivia): implications on the origin of the South American ungulates (project) , 2021 .

[12]  C. de Muizon,et al.  The longirostrine crocodyliforms from Bolivia and their evolution through the Cretaceous–Palaeogene boundary , 2021 .

[13]  Chengshan Wang,et al.  Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China , 2021, Earth-Science Reviews.

[14]  M. Garel,et al.  Calcium isotopic variability of cervid bioapatite and implications for mammalian physiology and diet , 2021, Palaeogeography, Palaeoclimatology, Palaeoecology.

[15]  J. Martin,et al.  Lactation and gestation controls on calcium isotopic compositions in a mammalian model. , 2021, Metallomics : integrated biometal science.

[16]  A. Coulon,et al.  Monthly mobility inferred from isoscapes and laser ablation strontium isotope ratios in caprine tooth enamel , 2021, Scientific Reports.

[17]  A. Gómez‐Olivencia,et al.  Isotopic calcium biogeochemistry of MIS 5 fossil vertebrate bones: application to the study of the dietary reconstruction of Regourdou 1 Neandertal fossil. , 2021, Journal of human evolution.

[18]  C. de Muizon,et al.  Cranial anatomy of Andinodelphys cochabambensis, a stem metatherian from the early Palaeocene of Bolivia , 2020, Geodiversitas.

[19]  M. Canals,et al.  A small Cretaceous crocodyliform in a dinosaur nesting ground and the origin of sebecids , 2020, Scientific Reports.

[20]  Mathieu G. Faure-Brac,et al.  Were Notosuchia (Pseudosuchia: Crocodylomorpha) warm-blooded? A palaeohistological analysis suggests ectothermy , 2020 .

[21]  T. Tacail,et al.  New frontiers in calcium stable isotope geochemistry: Perspectives in present and past vertebrate biology , 2020, Chemical Geology.

[22]  S. Gangloff,et al.  Determination of Radiogenic 87Sr/86Sr and Stable δ88/86SrSRM987 Isotope Values of Thirteen Mineral, Vegetal and Animal Reference Materials by DS‐TIMS , 2020, Geostandards and Geoanalytical Research.

[23]  G. Billet,et al.  New remains of kollpaniine “condylarths” (Panameriungulata) from the early Palaeocene of Bolivia shed light on hypocone origins and molar proportions among ungulate-like placentals , 2019, Geodiversitas.

[24]  T. Cerling,et al.  Calcium isotopes in enamel of modern and Plio-Pleistocene East African mammals , 2018, Earth and Planetary Science Letters.

[25]  S. Kelly,et al.  The molecular evolution of C4 photosynthesis: opportunities for understanding and improving the world's most productive plants. , 2018, Journal of experimental botany.

[26]  C. Selva,et al.  Allqokirus australis (Sparassodonta, Metatheria) from the early Palaeocene of Tiupampa (Bolivia) and the rise of the metatherian carnivorous radiation in South America , 2018, Geodiversitas.

[27]  J. E. Martin,et al.  Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs , 2018, Proceedings of the Royal Society B: Biological Sciences.

[28]  Chengshan Wang,et al.  Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China , 2018 .

[29]  K. Jochum,et al.  Calcium Carbonate and Phosphate Reference Materials for Monitoring Bulk and Microanalytical Determination of Sr Isotopes , 2018 .

[30]  J. Martin,et al.  Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction , 2017, Current Biology.

[31]  L. Viriot,et al.  Assessing human weaning practices with calcium isotopes in tooth enamel , 2017, Proceedings of the National Academy of Sciences.

[32]  J. Martin,et al.  Non‐traditional isotope perspectives in vertebrate palaeobiology , 2017 .

[33]  C. Lécuyer,et al.  Carbon and oxygen isotope variability among foraminifera and ostracod carbonated shells , 2016 .

[34]  J. Martin New material of the ziphodont mesoeucrocodylian Iberosuchus from the Eocene of Languedoc, southern France , 2016 .

[35]  G. Billet,et al.  Alcidedorbignya inopinata, a basal pantodont (Placentalia, Mammalia) from the early Palaeocene of Bolivia: anatomy, phylogeny and palaeobiology , 2015 .

[36]  C. Girard,et al.  Calcium isotopes reveal the trophic position of extant and fossil elasmobranchs , 2015 .

[37]  B. Reynard,et al.  Trace elements and their isotopes in bones and teeth: Diet, environments, diagenesis, and dating of archeological and paleontological samples , 2014 .

[38]  M. Bond,et al.  Paleogene Land Mammal Faunas of South America; a Response to Global Climatic Changes and Indigenous Floral Diversity , 2014, Journal of Mammalian Evolution.

[39]  P. Telouk,et al.  A simplified protocol for measurement of Ca isotopes in biological samples , 2014 .

[40]  Chengshan Wang,et al.  Paleoatmospheric pCO2 fluctuations across the Cretaceous–Tertiary boundary recorded from paleosol carbonates in NE China , 2013 .

[41]  Z. Gasparini LOS NOTOSUCHIA DEL CRETACICO DE AMERICA DEL SUR COMO UN NUEVO INFRAORDEN DE LOS MESOSUCHIA (CROCODILIA). , 2013 .

[42]  J. Trotter,et al.  Calibration of the phosphate δ18O thermometer with carbonate–water oxygen isotope fractionation equations , 2013 .

[43]  C. Trueman Chemical taphonomy of biomineralized tissues , 2013 .

[44]  R. Molnar Jaw musculature and jaw mechanics of Sebecus icaeorhinus Simpson, 1937 (Mesoeucrocodylia, Sebecosuchia) , 2012, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[45]  E. Baquedano,et al.  An experimental study of large mammal bone modification by crocodiles and its bearing on the interpretation of crocodile predation at FLK Zinj and FLK NN3 , 2012 .

[46]  M. Krause,et al.  Postcranial Anatomy of Sebecus icaeorhinus (Crocodyliformes, Sebecidae) from the Eocene of Patagonia , 2012 .

[47]  V. Pashley,et al.  The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. , 2012, Rapid communications in mass spectrometry : RCM.

[48]  D. Pol,et al.  A new sebecid mesoeucrocodylian from the Rio Loro Formation (Palaeocene) of north-western Argentina , 2011 .

[49]  S. Galer,et al.  Calcium isotopes in fossil bones and teeth - Diagenetic versus biogenic origin , 2011 .

[50]  M. Kohn Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate , 2010, Proceedings of the National Academy of Sciences.

[51]  M. Kohn,et al.  The effect of tissue structure and soil chemistry on trace element uptake in fossils , 2010 .

[52]  Yu-Fei Wang,et al.  Early Paleocene vegetation and climate in Jiayin, NE China , 2010 .

[53]  V. Gardien,et al.  Oxygen isotope fractionation between apatite-bound carbonate and water determined from controlled experiments with synthetic apatites precipitated at 10–37 °C , 2010 .

[54]  E. Buffetaut,et al.  Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods , 2010 .

[55]  J. Toggweiler,et al.  Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation , 2009 .

[56]  P. Degryse,et al.  Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices , 2009 .

[57]  C. Trueman,et al.  Geochemical study of vertebrate fossils from the Upper Cretaceous (Santonian) Csehbánya Formation (Hungary): Evidence for a freshwater habitat of mosasaurs and pycnodont fish , 2009 .

[58]  R. Lewison,et al.  Stable isotope ecology of the common hippopotamus , 2008 .

[59]  D. Kroon,et al.  Transient ocean warming and shifts in carbon reservoirs during the early Danian , 2008 .

[60]  T. Cerling,et al.  Temperature dependence of oxygen isotope acid fractionation for modern and fossil tooth enamels. , 2007, Rapid communications in mass spectrometry : RCM.

[61]  G. Stingeder,et al.  Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry. , 2007, Analytical chemistry.

[62]  E. Buffetaut,et al.  Oxygen isotope fractionation between crocodilian phosphate and water , 2007 .

[63]  G. Henderson,et al.  Establishing the potential of Ca isotopes as proxy for consumption of dairy products , 2006 .

[64]  E. Buffetaut,et al.  Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs , 2006 .

[65]  M. Moreau,et al.  Correlation of Terrestrial Climatic Fluctuations with Global Signals During the Upper Cretaceous–Danian in a Compressive Setting (Provence, France) , 2006 .

[66]  J. Ehleringer,et al.  Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals , 2005 .

[67]  E. Buffetaut,et al.  Latitudinal temperature gradient during the Cretaceous Upper Campanian–Middle Maastrichtian: y18O record of continental vertebrates , 2004 .

[68]  A. Mariotti,et al.  Diagenesis and the reconstruction of paleoenvironments: A method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel , 2004 .

[69]  B. Reynard,et al.  Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites , 2004 .

[70]  B. Spiro,et al.  Diagenetic effects on the oxygen isotope composition of bones of dinosaurs and other vertebrates recovered from terrestrial and marine sediments , 2003, Journal of the Geological Society.

[71]  P. Koch,et al.  A paleoecological paradox: the habitat and dietary preferences of the extinct tethythere Desmostylus, inferred from stable isotope analysis , 2003, Paleobiology.

[72]  C. Bogey,et al.  Stable isotope composition and rare earth element content of vertebrate remains from the Late Cretaceous of northern Spain (Laño): did the environmental record survive? , 2003 .

[73]  H. Bocherens,et al.  Evidence of physico-chemical and isotopic modifications in archaeological bones during controlled acid etching , 2002 .

[74]  D. Gröcke The carbon isotope composition of ancient CO2 based on higher-plant organic matter. , 2002, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[75]  G. Keller,et al.  Late Cretaceous to early Paleocene climate and sea-level fluctuations: the Tunisian record , 2002 .

[76]  T. Price,et al.  The Characterization of Biologically Available Strontium Isotope Ratios for the Study of Prehistoric Migration , 2002 .

[77]  P. Koch,et al.  Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel , 2001, Oecologia.

[78]  L. Sloan,et al.  Equable paleogene climates: The result of a stable, positive Arctic Oscillation? , 2001 .

[79]  J. Szaran,et al.  Improved thermal decomposition of sulfates to SO2 and mass spectrometric determination of ?34S of IAEA SO-5, IAEA SO-6 and NBS-127 sulfate standards , 2001 .

[80]  R. Howarth,et al.  Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr‐Isotope Curve for 0–509 Ma and Accompanying Look‐up Table for Deriving Numerical Age , 2001, The Journal of Geology.

[81]  H. Fricke,et al.  Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs , 2000 .

[82]  D. DePaolo,et al.  Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[83]  T. Cerling,et al.  Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies , 1999, Oecologia.

[84]  A. G. Fischer,et al.  Oxygen Isotopes from Turtle Bone: Applications for Terrestrial Paleoclimates? , 1999 .

[85]  B. Reynard,et al.  Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions , 1999 .

[86]  R. Cifelli,et al.  Eutherian tarsals from the early Paleocene of Bolivia , 1998 .

[87]  P. Koch,et al.  ISOTOPIC RECONSTRUCTION OF PAST CONTINENTAL ENVIRONMENTS , 1998 .

[88]  J. R. O'neil,et al.  Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds , 1997 .

[89]  N. Tuross,et al.  The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite , 1997 .

[90]  M. Kohn Predicting animal δ18O: Accounting for diet and physiological adaptation , 1996 .

[91]  J. Bryant,et al.  Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite , 1996 .

[92]  W. Clemens,et al.  Dinosaur bones: fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils , 1996 .

[93]  H. Bocherens,et al.  Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate? , 1996 .

[94]  J. Bryant,et al.  A MODEL OF OXYGEN ISOTOPE FRACTIONATION IN BODY WATER OF LARGE MAMMALS , 1995 .

[95]  C. Muizon A new carnivorous marsupial from the Palaeocene of Bolivia and the problem of marsupial monophyly , 1994, Nature.

[96]  J. Lee-Thorp,et al.  Trace element and isotopic aspects of predator-prey relationships in terrestrial foodwebs , 1994 .

[97]  Yang Wang,et al.  A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes , 1994 .

[98]  C. Lécuyer,et al.  Thermal excursions in the ocean at the Cretaceous—Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris , 1993 .

[99]  S. Clemens,et al.  Synchronous changes in seawater strontium isotope composition and global climate , 1993, Nature.

[100]  C. de Muizon,et al.  Alcidedorbignya inopinata (Mammalia: Pantodonta) from the Early Paleocene of Bolivia: phylogenetic and paleobiogeographic implications , 1992, Journal of Paleontology.

[101]  R. Crowson,et al.  Preparation of phosphate samples for oxygen isotope analysis , 1991 .

[102]  E. Martin,et al.  Seawater Sr isotopes at the Cretaceous/Tertiary boundary , 1991 .

[103]  J. Sealy,et al.  Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet , 1989 .

[104]  M. O'Leary,et al.  Carbon Isotopes in PhotosynthesisFractionation techniques may reveal new aspects of carbon dynamics in plants , 1988 .

[105]  A. Busbey New material of Sebecus cf. huilensis (Crocodilia: Sebecosuchidae) from the Miocene La Venta Formation of Colombia , 1986 .

[106]  Y. Kolodny,et al.  Oxygen isotope variations in phosphate of biogenic apatites, IV. Mammal teeth and bones , 1985 .

[107]  R. Korotev,et al.  The 'North American shale composite' - Its compilation, major and trace element characteristics , 1984 .

[108]  M. Horowitz,et al.  Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water , 1984 .

[109]  A. Longinelli Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? , 1984 .

[110]  Y. Kolodny,et al.  Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game , 1983 .

[111]  V. Krassilov CLIMATIC CHANGES IN EASTERN ASIA AS INDICATED BY FOSSIL FLORAS. II. LATE CRETACEOUS AND DANIAN , 1975 .

[112]  L. Haskin,et al.  Dispersed and not-so-rare earths. , 1966, Science.

[113]  M. Kohn,et al.  Caught in the act: A case study on microscopic scale physicochemical effects of fossilization on stable isotopic composition of bone , 2020 .

[114]  P. Telouk,et al.  Precise analysis of calcium stable isotope variations in biological apatites using laser ablation MC-ICPMS , 2016 .

[115]  S. Graham,et al.  Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous , 2015 .

[116]  H. Fricke Stable Isotope Geochemistry of Bonebed Fossils: Reconstructing Paleoenvironments, Paleoecology, and Paleobiology , 2007 .

[117]  A. Mariotti,et al.  Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions , 2004 .

[118]  H. Bocherens,et al.  Trophic Level Isotopic Enrichment of Carbon and Nitrogen in Bone Collagen: Case Studies from Recent and Ancient Terrestrial Ecosystems , 2003 .

[119]  M. Kohn,et al.  Tooth Oxygen Isotope Ratios As Paleoclimate Monitors In Arid Ecosystems , 2002 .

[120]  C. Muizon,et al.  Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and paleobiologic implications , 1998 .

[121]  D. Sigogneau-Russell,et al.  Pucadelphys andinus(marsupialia, mammalia) from the early paleocene of Bolivia , 1995 .

[122]  L. Tieszen,et al.  Effect of Diet Quality and Composition on the Isotopic Composition of Respiratory CO2, Bone Collagen, Bioapatite, and Soft Tissues , 1993 .

[123]  F. Meunier,et al.  Polyptériformes (pisces, cladistia) du maastrichtien et du paléocène de bolivie , 1992 .

[124]  Christian de Muizon La fauna de mamíferos de Tiupampa (Paleoceno Inferior, formación Santa Lucía),Bolivia , 1991 .

[125]  C. Muizon,et al.  Nouveaux Condylarthres du paléocène inférieur de Tiupampa (Bolivie) , 1991 .

[126]  J. Rage Gymnophionan amphibia from the Early Paleocene, Santa Lucia formation ofTiupampa, Bolivia: the oldest known gymnophiona , 1991 .

[127]  M. Gayet Nouveaux Siluriformes du Maastrichtien de Tiupampa (Bolivie) , 1990 .

[128]  M. Gayet Le plus ancien crâne de Siluriforme: Andinichthys bolivianensis nov. gen., nov. sp. (Andinichthyidae nov. fam.) du Maastrichtien de Tiupampa (Bolivie) , 1988 .

[129]  C. Muizon,et al.  Le plus ancien Pantodonte (Mammalia), du crétacé supérieur de Bolivie , 1987 .

[130]  L. Marshall,et al.  The down of the age of mammals in South America , 1984 .

[131]  C. Muizon,et al.  Late Cretaceous mammals (Marsupialia) from Bolivia , 1983 .

[132]  A. Lavenu,et al.  Late Cretaceous vertebrates, including mammals,from Tiupampa, Southcentral Bolivia , 1983 .