Molecular dynamics simulations of the surface tension and structure of salt solutions and clusters.

Sodium halides, which are abundant in sea salt aerosols, affect the optical properties of aerosols and are active in heterogeneous reactions that cause ozone depletion and acid rain problems. Interfacial properties, including surface tension and halide anion distributions, are crucial issues in the study of the aerosols. We present results from molecular dynamics simulations of water solutions and clusters containing sodium halides with the interatomic interactions described by a conventional force field. The simulations reproduce experimental observations that sodium halides increase the surface tension with respect to pure water and that iodide anions reach the outermost layer of water clusters or solutions. It is found that the van der Waals interactions have an impact on the distribution of the halide anions and that a conventional force field with optimized parameters can model the surface tension of the salt solutions with reasonable accuracy.

[1]  J. Seinfeld,et al.  Reshaping the Theory of Cloud Formation , 2001, Science.

[2]  R. Saykally,et al.  Evidence for an enhanced hydronium concentration at the liquid water surface. , 2005, The journal of physical chemistry. B.

[3]  Michael H. Smith Sea-salt particles and the CLAW hypothesis , 2007 .

[4]  R. Saykally,et al.  Adsorption of ions to the surface of dilute electrolyte solutions: the Jones-Ray effect revisited. , 2005, Journal of the American Chemical Society.

[5]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[6]  S. Pandis,et al.  Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols , 1992, Nature.

[7]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[8]  K. Gubbins,et al.  A molecular dynamics study of liquid drops , 1984 .

[9]  C. O'Dowd,et al.  Coupling sea‐salt and sulphate interactions and its impact on cloud droplet concentration predictions , 1999 .

[10]  Douglas J. Tobias,et al.  Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry , 2001 .

[11]  Pavel Jungwirth,et al.  Specific ion effects at the air/water interface. , 2006, Chemical reviews.

[12]  Y. Levin,et al.  Ions at the air-water interface: an end to a hundred-year-old mystery? , 2009, Physical review letters.

[13]  H. Köhler The nucleus in and the growth of hygroscopic droplets , 1936 .

[14]  Xin Li,et al.  Surface-Active cis-Pinonic Acid in Atmospheric Droplets: A Molecular Dynamics Study , 2010 .

[15]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[16]  L. Dang,et al.  Recent advances in molecular simulations of ion solvation at liquid interfaces. , 2006, Chemical reviews.

[17]  S. Weiss,et al.  Chemical physics. Single-molecule spectroscopy comes of age. , 2001, Science.

[18]  B. Barkstrom,et al.  Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment , 1989, Science.

[19]  D. F. Ogletree,et al.  Electron Spectroscopy of Aqueous Solution Interfaces Reveals Surface Enhancement of Halides , 2005, Science.

[20]  Y. Levin Polarizable ions at interfaces. , 2008, Physical review letters.

[21]  R. Tuckermann Surface tension of aqueous solutions of water-soluble organic and inorganic compounds , 2007 .

[22]  D. Tildesley,et al.  Molecular dynamics simulation of the orthobaric densities and surface tension of water , 1995 .

[23]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[24]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[25]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[26]  Henning Rodhe,et al.  Atmospheric chemistry: Clouds and climate , 1999, Nature.

[27]  R. Garcia,et al.  The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes , 1996 .

[28]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[29]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[30]  M. H. Smith,et al.  Physicochemical properties of aerosols over the northeast Atlantic: Evidence for wind‐speed‐related submicron sea‐salt aerosol production , 1993 .

[31]  Carl Caleman,et al.  Atomistic simulation of ion solvation in water explains surface preference of halides , 2011, Proceedings of the National Academy of Sciences.

[32]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[33]  C. Mundy,et al.  Toward an Understanding of the Specific Ion Effect Using Density Functional Theory , 2011 .

[34]  J. Lovelock Hands up for the Gaia hypothesis , 1990, Nature.

[35]  Douglas J. Tobias,et al.  Ions at the Air/Water Interface , 2002 .

[36]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[37]  A. R. Ravishankara,et al.  Heterogeneous and Multiphase Chemistry in the Troposphere , 1997 .

[38]  Ioannis Skarmoutsos,et al.  On Ion and Molecular Polarization of Halides in Water. , 2009, Journal of chemical theory and computation.

[39]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[40]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[41]  Paul J. Crutzen,et al.  A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer , 1996 .

[42]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[43]  A. H. Woodcock,et al.  Bubble Formation and Modification in the Sea and its Meteorological Significance , 1957 .

[44]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[45]  A. Laaksonen,et al.  Surface tension of water droplets: A molecular dynamics study of model and size dependencies , 1997 .