Self-Organizing Computing Systems: Songline Processors

Theory is at the threshold of understanding how to translate self-organizing principles and processes to human-formed systems. However, practice lags behind theory. This chapter endeavours to provide inroads into the application of self-organization principles to one aspect of electronics systems, namely, digital logic. In this chapter we present research done on the design of the FPGA and its low level logic behavior to develop self-organizing primitives that can be used to structure the logical levels above it, or can be invoked by those upper logical levels. We view this as foundational work toward the eventual integration of self-organizing behavior into digital logic.

[1]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[2]  L. Peter Deutsch,et al.  Efficient implementation of the smalltalk-80 system , 1984, POPL.

[3]  E. Winfree Simulations of Computing by Self-Assembly , 1998 .

[4]  A. Mathewson,et al.  Performance enhancement defect tolerance in the cell matrix architecture , 2004, 2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716).

[5]  Hervé Abdi,et al.  A NEURAL NETWORK PRIMER , 1994 .

[6]  Kenneth Rose,et al.  First-order performance prediction of cache memory with wafer-level 3D integration , 2005, IEEE Design & Test of Computers.

[7]  Moshe Sipper,et al.  Toward self-repairing and self-replicating hardware: the Embryonics approach , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[8]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[9]  John E. Karro,et al.  Three-dimensional field-programmable gate arrays , 1995, Proceedings of Eighth International Application Specific Integrated Circuits Conference.

[10]  Adrian Thompson,et al.  An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics , 1996, ICES.

[11]  Chris Dwyer,et al.  DNA self-assembled parallel computer architectures , 2004 .

[12]  Joseph W. Yoder,et al.  Wafer-scale optimization using computational availability , 1992, Computer.

[13]  Henning Sirringhaus,et al.  Manufacturing of Organic Transistor Circuits by Solution‐based Printing , 2006 .

[14]  J. Christopher Love,et al.  Technologies and Designs for Electronic Nanocomputers , 1995 .

[15]  Erik Winfree DNA Computing by Self-Assembly , 2003 .

[16]  Miriam Leeser,et al.  Architectural design of a three dimensional FPGA , 1997, Proceedings Seventeenth Conference on Advanced Research in VLSI.

[17]  Seth Copen Goldstein,et al.  Molecular electronics: from devices and interconnect to circuits and architecture , 2003, Proc. IEEE.

[18]  William Aspray,et al.  Papers of John Von Neumann on computing and computer theory, Vol 12 , 1986 .

[19]  Kia Bazargan,et al.  Exploring Potential Benefits of 3D FPGA Integration , 2004, FPL.

[20]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[21]  J. Reif,et al.  Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. , 2006, Angewandte Chemie.

[22]  William S. Wong,et al.  Thin‐film Transistor Fabrication by Digital Lithography , 2006 .

[23]  J. Presper Eckert,et al.  The UNIVAC system , 1951, AIEE-IRE '51.

[24]  Nicholas J. Macias,et al.  Defect-tolerant, fine-grained parallel testing of a Cell Matrix , 2002, SPIE ITCom.

[25]  Zamora,et al.  Electronic textiles: a platform for pervasive computing , 2003, Proceedings of the IEEE.

[26]  D. Patterson,et al.  Wafer scale integration , 1984, 1984 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[27]  Miriam Leeser,et al.  Rothko: A three dimensional FPGA architecture, its fabrication, and design tools , 1997, FPL.

[28]  Nicholas J. Macias,et al.  The PIG paradigm: the design and use of a massively parallel fine grained self-reconfigurable infinitely scalable architecture , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[29]  Nicholas J. Macias,et al.  A hardware implementation of the cell matrix self-configurable architecture: the Cell Matrix MOD 88/spl trade/ , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[30]  Erik Winfree,et al.  Neural Network Computation by In Vitro Transcriptional Circuits , 2004, NIPS.

[31]  Chris Dwyer,et al.  NANA: A nano-scale active network architecture , 2006, JETC.

[32]  Hugo Thienpont,et al.  An Optoelectronic 3-D Field Programmable Gate Array , 1994, FPL.

[33]  J. Edmison,et al.  Using piezoelectric materials for wearable electronic textiles , 2002, Proceedings. Sixth International Symposium on Wearable Computers,.

[34]  B H Robinson,et al.  The design of a biochip: a self-assembling molecular-scale memory device. , 1987, Protein engineering.

[35]  Richard H. Friend,et al.  Printing of polymer thin-film transistors for active-matrix-display applications , 2003 .

[36]  Thomas A. Fischer,et al.  Heavy-Ion-Induced, Gate-Rupture in Power MOSFETs , 1987, IEEE Transactions on Nuclear Science.

[37]  Andrew M. Tyrrell,et al.  Embryonics: A Bio-Inspired Cellular Architecture with Fault-Tolerant Properties , 2000, Genetic Programming and Evolvable Machines.

[38]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[39]  L. Durbeck,et al.  The Cell Matrix: an architecture for nanocomputing , 2001 .

[40]  Gabriele Saucier,et al.  Configuring a wafer-scale two-dimensional array of single-bit processors , 1992, Computer.

[41]  E. Winfree,et al.  Algorithmic Self-Assembly of DNA Sierpinski Triangles , 2004, PLoS biology.

[42]  H. Sagan Space-filling curves , 1994 .

[43]  Reiner W. Hartenstein,et al.  Field-Programmable Logic Architectures, Synthesis and Applications , 1994, Lecture Notes in Computer Science.

[44]  James G. Lennox,et al.  Aristotle's Philosophy of Biology: Studies in the Origins of Life Science , 2000 .

[45]  Chris Dwyer,et al.  Circuit and System Architecture for DNA-Guided Self-Assembly of Nanoelectronics , 2004 .

[46]  N. Seeman Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship. , 2003, Biochemistry.

[47]  William A. MacDonald Advanced Flexible Polymeric Substrates , 2006 .

[48]  Ian Page Constructing hardware-software systems from a single description , 1996, J. VLSI Signal Process..

[49]  Carl Ebeling,et al.  The Triptych FPGA architecture , 1995, IEEE Trans. Very Large Scale Integr. Syst..

[50]  Herman Schmit Incremental reconfiguration for pipelined applications , 1997, Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186).

[51]  Earl E. Swartzlander,et al.  Wafer-Scale Integration: Architectures and Algorithms - Guest Editors' Introduction , 1992, Computer.

[52]  Donald E. Troxel,et al.  A comprehensive layout methodology and layout-specific circuit analyses for three-dimensional integrated circuits , 2002, Proceedings International Symposium on Quality Electronic Design.

[53]  John S. McCaskill,et al.  Artificial Life VII: Proceedings of the Seventh International Conference on Artificial Life , 2000 .

[54]  Garrison W. Greenwood,et al.  Introduction to evolvable hardware , 2006 .

[55]  Steven Trimberger,et al.  Scheduling designs into a time-multiplexed FPGA , 1998, FPGA '98.

[56]  Mark T. Jones,et al.  Towards a design framework for wearable electronic textiles , 2003, Seventh IEEE International Symposium on Wearable Computers, 2003. Proceedings..

[57]  Erik Winfree,et al.  Proofreading Tile Sets: Error Correction for Algorithmic Self-Assembly , 2003, DNA.

[58]  A. E. Waskiewicz,et al.  Burnout of Power MOS Transistors with Heavy Ions of Californium-252 , 1986, IEEE Transactions on Nuclear Science.

[59]  D. Wellekens,et al.  The future of flash memory: Is floating gate technology doomed to lose the race? , 2008, 2008 IEEE International Conference on Integrated Circuit Design and Technology and Tutorial.

[60]  Gianluca Tempesti,et al.  Embryonics: Electronic Stem Cells , 2002 .

[61]  Chris Dwyer,et al.  Design tools for a DNA-guided self-assembling carbon nanotube technology , 2004 .

[62]  Chris Dwyer,et al.  Design automation for DNA self-assembled nanostructures , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[63]  Manfred Glesner,et al.  Defect Tolerance in a Wafer Scale Array for Image Processing , 1989 .

[64]  R. Stanley Williams,et al.  Trends in Nanotechnology: Self-Assembly and Defect Tolerance , 2001 .

[65]  Nicholas J. Macias,et al.  Self-assembling circuits with autonomous fault handling , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[66]  N J Macias,et al.  Adaptive methods for growing electronic circuits on an imperfect synthetic matrix. , 2004, Bio Systems.

[67]  C. Darwin Charles Darwin The Origin of Species by means of Natural Selection or The Preservation of Favoured Races in the Struggle for Life , 2004 .

[68]  P. W. Wyatt,et al.  Restructurable VLSI-a demonstrated wafer-scale technology , 1989, [1989] Proceedings International Conference on Wafer Scale Integration.