A Feature-based Approach for Dense Segmentation and Estimation of Large Disparity Motion

We present a novel framework for motion segmentation that combines the concepts of layer-based methods and feature-based motion estimation. We estimate the initial correspondences by comparing vectors of filter outputs at interest points, from which we compute candidate scene relations via random sampling of minimal subsets of correspondences. We achieve a dense, piecewise smooth assignment of pixels to motion layers using a fast approximate graphcut algorithm based on a Markov random field formulation. We demonstrate our approach on image pairs containing large inter-frame motion and partial occlusion. The approach is efficient and it successfully segments scenes with inter-frame disparities previously beyond the scope of layer-based motion segmentation methods. We also present an extension that accounts for the case of non-planar motion, in which we use our planar motion segmentation results as an initialization for a regularized Thin Plate Spline fit. In addition, we present applications of our method to automatic object removal and to structure from motion.

[1]  Allen R. Hanson,et al.  Trackability as a cue for potential obstacle identification and 3-D description , 1993, International Journal of Computer Vision.

[2]  Walter Schempp,et al.  Constructive Theory of Functions of Several Variables: Proceedings of a Conference Held at Oberwolfach, Germany, April 25 - May 1, 1976 , 1977, Constructive Theory of Functions of Several Variables.

[3]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[4]  G. Wahba Spline models for observational data , 1990 .

[5]  Matthew Brand,et al.  Morphable 3D models from video , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Serge J. Belongie,et al.  Structure from Periodic Motion , 2004, SCVMA.

[7]  Jing Xiao,et al.  A Closed-Form Solution to Non-rigid Shape and Motion Recovery , 2004, ECCV.

[8]  Serge J. Belongie,et al.  Approximate Thin Plate Spline Mappings , 2002, ECCV.

[9]  Matthew Brand,et al.  Flexible flow for 3D nonrigid tracking and shape recovery , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Richard Szeliski,et al.  An integrated Bayesian approach to layer extraction from image sequences , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[11]  Andrew Zisserman,et al.  Motion Clustering using the Trilinear Constraint over Three Views , 1995 .

[12]  J. Meinguet Multivariate interpolation at arbitrary points made simple , 1979 .

[13]  P. Anandan,et al.  About Direct Methods , 1999, Workshop on Vision Algorithms.

[14]  Steven M. Seitz,et al.  View morphing , 1996, SIGGRAPH.

[15]  Jitendra Malik,et al.  Computational framework for determining stereo correspondence from a set of linear spatial filters , 1992, Image Vis. Comput..

[16]  M. Shah,et al.  Motion layer extraction in the presence of occlusion using graph cut , 2004, CVPR 2004.

[17]  Mubarak Shah,et al.  Motion layer extraction in the presence of occlusion using graph cuts , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[19]  J. Duchon Fonctions-spline et espérances conditionnelles de champs gaussiens , 1976 .

[20]  Harpreet S. Sawhney,et al.  Layered representation of motion video using robust maximum-likelihood estimation of mixture models and MDL encoding , 1995, Proceedings of IEEE International Conference on Computer Vision.

[21]  Aaron Hertzmann,et al.  Automatic Non-rigid 3D Modeling from Video , 2004, ECCV.

[22]  P. Torr Geometric motion segmentation and model selection , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Richard Szeliski,et al.  Motion Estimation with Quadtree Splines , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[25]  A. Pentland,et al.  Robust estimation of a multi-layered motion representation , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[26]  Lorenzo Torresani,et al.  Tracking and modeling non-rigid objects with rank constraints , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[27]  René Vidal,et al.  A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation , 2004, ECCV.

[28]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[29]  Jean-Marc Odobez,et al.  Direct incremental model-based image motion segmentation for video analysis , 1998, Signal Process..

[30]  Olga Veksler,et al.  A New Algorithm for Energy Minimization with Discontinuities , 1999, EMMCVPR.

[31]  W. James MacLean Spatial Coherence for Visual Motion Analysis , 2006 .

[32]  Stefano Soatto,et al.  DEFORMOTION: Deforming Motion, Shape Average and the Joint Registration and Segmentation of Images , 2002, ECCV.

[33]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[34]  Michal Irani,et al.  Motion Analysis for Image Enhancement: Resolution, Occlusion, and Transparency , 1993, J. Vis. Commun. Image Represent..

[35]  Olga Veksler,et al.  Energy Minimization with Discontinuities , 2007 .

[36]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[37]  Yanxi Liu,et al.  Gait Sequence Analysis Using Frieze Patterns , 2002, ECCV.

[38]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[39]  Anand Rangarajan,et al.  A new algorithm for non-rigid point matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[40]  H. Opower Multiple view geometry in computer vision , 2002 .

[41]  Bernhard Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, International Conference on Machine Learning.

[42]  Long Quan,et al.  Match Propagation for Image-Based Modeling and Rendering , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  C. Tomasi,et al.  Factoring image sequences into shape and motion , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[44]  Serge J. Belongie,et al.  What went where , 2003, CVPR 2003.

[45]  Michal Irani,et al.  All About Direct Methods , 1999 .

[46]  F. Bookstein Thin-plate splines and decomposition of deformation , 1989 .

[47]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Edward H. Adelson,et al.  Layered representation for motion analysis , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[50]  W. James MacLean Spatial Coherence for Visual Motion Analysis, First International Workshop, SCVMA 2004, Prague, Czech Republic, May 15, 2004, Revised Papers , 2006, SCVMA.

[51]  Yair Weiss,et al.  Smoothness in layers: Motion segmentation using nonparametric mixture estimation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  Aaron Hertzmann,et al.  Learning Non-Rigid 3D Shape from 2D Motion , 2003, NIPS.

[53]  Michael J. Black,et al.  Estimating Optical Flow in Segmented Images Using Variable-Order Parametric Models With Local Deformations , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Richard Szeliski,et al.  Hierarchical spline-based image registration , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Serge J. Belongie,et al.  A Feature-Based Approach for Determining Dense Long Range Correspondences , 2004, ECCV.