Interleaver and Accumulator Design for Systematic Repeat-Accumulate Codes

Recent promising theoretical results for repeat-accumulate (RA) codes, together with their extremely simple encoding, motivates this investigation into the design and implementation of practical RA codes. We consider two main issues: the construction of the interleaver in fixed length codes using combinatorial designs; and the improvement of the error floor performance of RA codes by modifying the accumulator

[1]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[2]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[3]  Hui Jin,et al.  Irregular Repeat – Accumulate Codes 1 , 2000 .

[4]  Rüdiger L. Urbanke,et al.  Complexity versus performance of capacity-achieving irregular repeat-accumulate codes on the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[5]  Shu Lin,et al.  Iterative decoding of one-step majority logic deductible codes based on belief propagation , 2000, IEEE Trans. Commun..

[6]  Suquan Ding Iterative Decoding of L-step Majority-Logic Decodable Codes Based on Belief Propagation , 2007, International Conference on Wireless Communications, Networking and Mobile Computing.

[7]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[8]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[9]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[10]  Sarah J. Johnson,et al.  Resolvable 2-designs for regular low-density parity-check codes , 2003, IEEE Trans. Commun..

[11]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.