Statistical evaluation of diet-microbe associations

[1]  V. Tremaroli,et al.  Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography , 2018, Nature Medicine.

[2]  M. B. Pereira,et al.  Comparison of normalization methods for the analysis of metagenomic gene abundance data , 2018, BMC Genomics.

[3]  Levi Waldron,et al.  HMP16SData: Efficient Access to the Human Microbiome Project through Bioconductor , 2018, bioRxiv.

[4]  Rafael A. Irizarry,et al.  Meta-analysis of gut microbiome studies identifies disease-specific and shared responses , 2017, Nature Communications.

[5]  Yinglin Xia,et al.  Hypothesis testing and statistical analysis of microbiome , 2017, Genes & diseases.

[6]  K. Stronks,et al.  Dietary pattern derived by reduced rank regression and depressive symptoms in a multi-ethnic population: the HELIUS study , 2017, European Journal of Clinical Nutrition.

[7]  Lei Zhang,et al.  Negative binomial mixed models for analyzing microbiome count data , 2017, BMC Bioinformatics.

[8]  S. Sørensen,et al.  Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies , 2016, Microbiome.

[9]  Ben Nichols,et al.  VSEARCH: a versatile open source tool for metagenomics , 2016, PeerJ.

[10]  Erik Kristiansson,et al.  Statistical evaluation of methods for identification of differentially abundant genes in comparative metagenomics , 2016, BMC Genomics.

[11]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[12]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[13]  H. Brants,et al.  Development of the HELIUS food frequency questionnaires: ethnic-specific questionnaires to assess the diet of a multiethnic population in The Netherlands , 2014, European Journal of Clinical Nutrition.

[14]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[15]  Susan P. Holmes,et al.  Waste Not , Want Not : Why Rarefying Microbiome Data is Inadmissible . October 1 , 2013 , 2013 .

[16]  M. Pop,et al.  Robust methods for differential abundance analysis in marker gene surveys , 2013, Nature Methods.

[17]  Mihai Pop,et al.  Robust methods for differential abundance analysis in marker gene surveys , 2013, Nature Methods.

[18]  Karien Stronks,et al.  Unravelling the impact of ethnicity on health in Europe: the HELIUS study , 2013, BMC Public Health.

[19]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[20]  C. Quince,et al.  Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics , 2012, PloS one.

[21]  F. Bushman,et al.  Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes , 2011, Science.

[22]  K. Stronks,et al.  Ethnic differences in diet : A focus on methodology , determinants and Type 2 Diabetes Mellitus , 2015 .

[23]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[24]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[25]  Erik Kristiansson,et al.  ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes , 2009, Bioinform..

[26]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[27]  M. G. Pittau,et al.  A weakly informative default prior distribution for logistic and other regression models , 2008, 0901.4011.

[28]  Aaron T. L. Lun,et al.  Differential Expression Analysis of Complex RNA-seq Experiments Using edgeR , 2014 .