Single-Molecule Dynamics of Enhanceosome Assembly in Embryonic Stem Cells

Enhancer-binding pluripotency regulators (Sox2 and Oct4) play a seminal role in embryonic stem (ES) cell-specific gene regulation. Here, we combine in vivo and in vitro single-molecule imaging, transcription factor (TF) mutagenesis, and ChIP-exo mapping to determine how TFs dynamically search for and assemble on their cognate DNA target sites. We find that enhanceosome assembly is hierarchically ordered with kinetically favored Sox2 engaging the target DNA first, followed by assisted binding of Oct4. Sox2/Oct4 follow a trial-and-error sampling mechanism involving 84-97 events of 3D diffusion (3.3-3.7 s) interspersed with brief nonspecific collisions (0.75-0.9 s) before acquiring and dwelling at specific target DNA (12.0-14.6 s). Sox2 employs a 3D diffusion-dominated search mode facilitated by 1D sliding along open DNA to efficiently locate targets. Our findings also reveal fundamental aspects of gene and developmental regulation by fine-tuning TF dynamics and influence of the epigenome on target search parameters.

[1]  Nathan C. Sheffield,et al.  Predicting cell-type–specific gene expression from regions of open chromatin , 2012, Genome research.

[2]  R. Tjian,et al.  Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. , 2012, Genes & development.

[3]  Matthias Wilmanns,et al.  Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. , 2003, Genes & development.

[4]  Thorsten Wohland,et al.  DNA-dependent Oct4-Sox2 interaction and diffusion properties characteristic of the pluripotent cell state revealed by fluorescence spectroscopy. , 2012, The Biochemical journal.

[5]  Alexander Y Katsov,et al.  fast multicolor 3 d imaging using aberration-corrected multifocus microscopy , 2012 .

[6]  Simon J. van Heeringen,et al.  GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments , 2010, Bioinform..

[7]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[8]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[9]  Anne E Carpenter,et al.  A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen , 2006, Cell.

[10]  Johan Elf,et al.  The lac Repressor Displays Facilitated Diffusion in Living Cells , 2012, Science.

[11]  M. Ueda,et al.  Statistical analysis of lateral diffusion and multistate kinetics in single-molecule imaging. , 2009, Biophysical journal.

[12]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor--operator interaction: equilibrium measurements. , 1981, Biochemistry.

[13]  R. Lovell-Badge,et al.  Multipotent cell lineages in early mouse development depend on SOX2 function. , 2003, Genes & development.

[14]  J. McNally,et al.  Quantifying transcription factor kinetics: At work or at play? , 2013, Critical reviews in biochemistry and molecular biology.

[15]  L. Mirny,et al.  Higher-order chromatin structure: bridging physics and biology. , 2012, Current opinion in genetics & development.

[16]  Richard Lavery,et al.  Towards a molecular view of transcriptional control. , 2012, Current opinion in structural biology.

[17]  A. Sergé,et al.  Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes , 2008, Nature Methods.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  M. Davidson,et al.  Noninvasive Imaging beyond the Diffraction Limit of 3D Dynamics in Thickly Fluorescent Specimens , 2012, Cell.

[20]  James B. Brown,et al.  DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[21]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[22]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[23]  Andrej Kosmrlj,et al.  How a protein searches for its site on DNA: the mechanism of facilitated diffusion , 2009 .

[24]  M. Davidson,et al.  Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination , 2011, Nature Methods.

[25]  X. Xie,et al.  Single Molecule Imaging of Transcription Factor Binding to DNA in Live Mammalian Cells , 2013, Nature Methods.

[26]  David Z. Chen,et al.  Architecture of the human regulatory network derived from ENCODE data , 2012, Nature.

[27]  K. Berland,et al.  Propagators and time-dependent diffusion coefficients for anomalous diffusion. , 2008, Biophysical journal.

[28]  P. Schwille,et al.  Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. , 1997, Biophysical journal.

[29]  J. McNally,et al.  A benchmark for chromatin binding measurements in live cells , 2012, Nucleic acids research.

[30]  Eric H Davidson,et al.  Gene regulation: gene control network in development. , 2007, Annual review of biophysics and biomolecular structure.

[31]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[32]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[33]  Antoine M. van Oijen,et al.  Tumor suppressor p53 slides on DNA with low friction and high stability. , 2008, Biophysical journal.

[34]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[35]  H. Schöler,et al.  Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4 , 1998, Cell.

[36]  R. Tjian,et al.  Transcription regulation and animal diversity , 2003, Nature.

[37]  William Stafford Noble,et al.  Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays , 2006, Nature Methods.

[38]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[39]  T. Misteli,et al.  Transcription dynamics. , 2009, Molecular cell.

[40]  S. Halford,et al.  An end to 40 years of mistakes in DNA-protein association kinetics? , 2009, Biochemical Society transactions.

[41]  L. Mirny,et al.  Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. , 2004, Biophysical journal.

[42]  D. Loebel,et al.  Gene function in mouse embryogenesis: get set for gastrulation , 2007, Nature Reviews Genetics.

[43]  Istvan Albert,et al.  GeneTrack - a genomic data processing and visualization framework , 2008, Bioinform..

[44]  Xiao-lun Wu,et al.  Stick-and-diffuse and caged diffusion: a comparison of two models of synaptic vesicle dynamics. , 2007, Biophysical journal.

[45]  Christophe Zimmer,et al.  FISH-quant: automatic counting of transcripts in 3D FISH images , 2013, Nature Methods.

[46]  H. Qian,et al.  Studies on the structure of actin gels using time correlation spectroscopy of fluorescent beads. , 1992, Biophysical journal.

[47]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[48]  Yong Zhang,et al.  Identifying ChIP-seq enrichment using MACS , 2012, Nature Protocols.

[49]  J. Zeitlinger,et al.  Polycomb complexes repress developmental regulators in murine embryonic stem cells , 2006, Nature.

[50]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[51]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. , 1981, Biochemistry.