Path Planning and Control for Autonomous Navigation of Single and Multiple Magnetic Mobile Microrobots

In this paper, we have developed an approach for autonomous navigation of single and multiple microrobots under the influence of magnetic fields generated by electromagnetic coils. Our approach consists of three steps. First, we have developed a heuristics based planning algorithm for generating collision-free trajectories for the microrobots that are suitable to be executed by the available magnetic field. Second, we have modeled the dynamics of the microrobots to develop a controller for determining the forces that need to be generated for the navigation of the robots along the trajectories at a suitable control frequency. Finally, an optimization routine is developed to determine the input currents to the electromagnetic coils that can generate the required forces for the navigation of the robots at the controller frequency. We have validated our approach by simulating two electromagnetic coil systems. The first system has four electromagnetic coils designed for actuating a single microrobot. The second system has an array of sixty-four magnetic microcoils designed for generating local magnetic fields suitable for simultaneous independent actuation of multiple microrobots.Copyright © 2015 by ASME

[1]  David J. Cappelleri,et al.  A Micro-Scale Magnetic Tumbling Microrobot , 2012 .

[2]  Satyandra K. Gupta,et al.  Automated Manipulation of Biological Cells Using Gripper Formations Controlled By Optical Tweezers , 2014, IEEE Transactions on Automation Science and Engineering.

[3]  David J. Cappelleri,et al.  Towards Mobile Microrobot Swarms for Additive Micromanufacturing , 2014 .

[4]  Satyandra K. Gupta,et al.  Optical Tweezers: Autonomous Robots for the Manipulation of Biological Cells , 2014, IEEE Robotics & Automation Magazine.

[5]  Marco Aiello,et al.  AAAI Conference on Artificial Intelligence , 2011, AAAI Conference on Artificial Intelligence.

[6]  David J. Cappelleri,et al.  Caging for 2D and 3D micromanipulation , 2012 .

[7]  David J. Cappelleri,et al.  A novel micro-scale magnetic tumbling microrobot , 2013 .

[8]  Ping Zhang,et al.  μ3: Multiscale, Deterministic Micro-Nano Assembly System for Construction of On-Wafer Microrobots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[9]  Christoph Hürzeler,et al.  A Microassembly System for the Flexible Assembly of Hybrid Robotic Mems Devices , 2009 .

[10]  David J. Cappelleri,et al.  Towards Functional Mobile Magnetic Microrobots , 2013, SSR@ICRA.

[11]  Wenqi Hu,et al.  Micro-assembly using optically controlled bubbles , 2011, 16th International Conference on Optical MEMS and Nanophotonics.

[12]  David J. Cappelleri,et al.  A Magnetic Microrobot with in situ Force Sensing Capabilities , 2014, Robotics.

[13]  Satyandra K. Gupta,et al.  Using GPUs for Realtime Prediction of Optical Forces on Microsphere Ensembles , 2013, J. Comput. Inf. Sci. Eng..

[14]  David J. Cappelleri,et al.  Towards flexible, automated microassembly with caging micromanipulation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[15]  Xi Chen,et al.  A magnetic thin film microrobot with two operating modes , 2011, 2011 IEEE International Conference on Robotics and Automation.

[16]  Ning Xi,et al.  Assembly of nanostructure using AFM based nanomanipulation system , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[17]  Maxim Likhachev,et al.  D*lite , 2002, AAAI/IAAI.

[18]  Ron Pelrine,et al.  Diamagnetically levitated robots: An approach to massively parallel robotic systems with unusual motion properties , 2012, 2012 IEEE International Conference on Robotics and Automation.

[19]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[20]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[21]  Satyandra K. Gupta,et al.  Real-Time Path Planning for Coordinated Transport of Multiple Particles Using Optical Tweezers , 2012, IEEE Transactions on Automation Science and Engineering.

[22]  Satyandra K. Gupta,et al.  Indirect pushing based automated micromanipulation of biological cells using optical tweezers , 2014, Int. J. Robotics Res..

[23]  Quan Zhou,et al.  Hybrid Microassembly Combining Robotics and Water Droplet Self-Alignment , 2010, IEEE Transactions on Robotics.

[24]  Vijay Kumar,et al.  Automated biomanipulation of single cells using magnetic microrobots , 2013, Int. J. Robotics Res..

[25]  Sergej Fatikow,et al.  A Flexible Microrobot-Based Microassembly Station , 2000, J. Intell. Robotic Syst..

[26]  Metin Sitti,et al.  Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems , 2011, ICRA.

[27]  Satyandra K. Gupta,et al.  Developing a Stochastic Dynamic Programming Framework for Optical Tweezer-Based Automated Particle Transport Operations , 2010, IEEE Transactions on Automation Science and Engineering.

[28]  Satyandra K. Gupta,et al.  Automated Cell Transport in Optical Tweezers-Assisted Microfluidic Chambers , 2013, IEEE Transactions on Automation Science and Engineering.

[29]  Satyandra K. Gupta,et al.  Algorithms for On-Line Monitoring of Micro Spheres in an Optical Tweezers-Based Assembly Cell , 2007, J. Comput. Inf. Sci. Eng..

[30]  Kenneth Y. Goldberg,et al.  Parallel microassembly with electrostatic force fields , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[31]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[32]  Xi Chen,et al.  Design of a Micro-Scale Magnetostrictive Asymmetric Thin Film Bimorph (µMAB) Microrobot , 2010 .

[33]  Ronald S. Fearing,et al.  Rapidly Prototyped Orthotweezers for Automated Microassembly , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[34]  David J. Cappelleri,et al.  A tumbling magnetic microrobot with flexible operating modes , 2013, 2013 IEEE International Conference on Robotics and Automation.

[35]  David J. Cappelleri,et al.  Incorporating in-situ force sensing capabilities in a magnetic microrobot , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[37]  Metin Sitti,et al.  Control of Multiple Heterogeneous Magnetic Microrobots in Two Dimensions on Nonspecialized Surfaces , 2012, IEEE Transactions on Robotics.