Smooth Exact Traveling Wave Solutions Determined by Singular Nonlinear Traveling Wave Systems: Two Models

For a singular nonlinear traveling wave system of the first class, if there exist two node points of the associated regular system in the singular straight line, then the dynamics of the solutions ...

[1]  Guanrong Chen,et al.  Understanding Peakons, Periodic Peakons and Compactons via a Shallow Water Wave Equation , 2016, Int. J. Bifurc. Chaos.

[2]  D. Fan,et al.  Controllable Raman soliton self-frequency shift in nonlinear metamaterials , 2011 .

[3]  M. Belić,et al.  Raman solitons in nanoscale optical waveguides, with metamaterials, having polynomial law non-linearity , 2016 .

[4]  Anjan Biswas,et al.  Singular solitons in optical metamaterials by ansatz method and simplest equation approach , 2014 .

[5]  Shengfu Deng,et al.  Traveling wave solutions of the Green-Naghdi System , 2013, Int. J. Bifurc. Chaos.

[6]  Qin Zhou,et al.  Explicit solitons in the parabolic law nonlinear negative-index materials , 2017 .

[7]  Shengfu Deng,et al.  Some Traveling Wave solitons of the Green-Naghdi System , 2011, Int. J. Bifurc. Chaos.

[8]  Qin Zhou,et al.  Analytical study of solitons in non-Kerr nonlinear negative-index materials , 2016 .

[9]  P. M. Naghdi,et al.  On the theory of water waves , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  GUANRONG CHEN,et al.  On a Class of Singular Nonlinear Traveling Wave Equations , 2007, Int. J. Bifurc. Chaos.

[11]  Anjan Biswas,et al.  Bright and dark solitons in optical metamaterials , 2014 .

[12]  Qin Zhou,et al.  Exact optical solitons in metamaterials with cubic–quintic nonlinearity and third-order dispersion , 2015 .

[13]  P. M. Naghdi,et al.  A derivation of equations for wave propagation in water of variable depth , 1976, Journal of Fluid Mechanics.