Synthesis and optical properties of SnO2 nanorods

Well-crystalline SnO(2) nanorods have been synthesized successfully via a lithium-assisted solution-phase method. The structural and optical properties of the SnO(2) nanorods were investigated using x-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and infrared, Raman and photoluminescence spectroscopy. The experimental results show that lithium addition plays a critical role in the formation of SnO(2) nanorods, and the correlation between the surface energy change and morphological evolution of this material is also discussed. This approach provides an economically viable route for large-scale synthesis of this nanostructured material.

[1]  E. Longo,et al.  Thermodynamic argument about SnO2 nanoribbon growth , 2003 .

[2]  D. Yuan,et al.  Photoluminescence Properties of SnO 2 Nanoparticles Synthesized by Sol−Gel Method , 2004 .

[3]  Joanna McKittrick,et al.  Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges , 1997 .

[4]  Y. C. Lee,et al.  Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment , 2005 .

[5]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[6]  F. Papadimitrakopoulos,et al.  Redox-assisted asymmetric ostwald ripening of CdSe dots to rods. , 2006, Journal of the American Chemical Society.

[7]  Chunhua Yan,et al.  Luminescent properties of Li+ doped nanosized Y2O3:Eu , 2001 .

[8]  Liberato Manna,et al.  Shape Control of Colloidal Semiconductor Nanocrystals , 2002 .

[9]  Deliang Chen,et al.  Facile synthesis of single-crystal tin oxide nanorods with tunable dimensions via hydrothermal process , 2004 .

[10]  D. Yuan,et al.  Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[11]  Jiye Fang,et al.  Shape evolution and self assembly of monodisperse PbTe nanocrystals. , 2004, Journal of the American Chemical Society.

[12]  K. Abe,et al.  Optical Surface Phonon Modes in ZnO Small Crystals , 1977 .

[13]  Xiaogang Peng Mechanisms for the Shape‐Control and Shape‐Evolution of Colloidal Semiconductor Nanocrystals , 2003 .

[14]  Shui-Tong Lee,et al.  LARGE SCALE RAPID OXIDATION SYNTHESIS OF SNO2 NANORIBBONS , 2002 .

[15]  K. L. Kliewer,et al.  Optical Modes of Vibration in an Ionic Crystal Sphere , 1968 .

[16]  E. Samulski,et al.  Large-Scale, solution-phase growth of single-crystalline SnO2 nanorods. , 2004, Journal of the American Chemical Society.

[17]  Z. Wang,et al.  Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies , 2000 .

[18]  Feng Gu,et al.  Synthesis and luminescence properties of SnO2 nanoparticles , 2003 .

[19]  R. Ruppin,et al.  Phonon-plasmon modes in small GaN crystals , 1974 .

[20]  Zhong Lin Wang,et al.  Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. , 2006, Small.

[21]  C. R. A. Catlow,et al.  Study of Surface Segregation of Antimony on SnO2 Surfaces by Computer Simulation Techniques , 1999 .

[22]  Angel Diéguez,et al.  The complete Raman spectrum of nanometric SnO 2 particles , 2001 .

[23]  Y. Hamakawa,et al.  Electroluminescence in Li‐codoped ZnS: TmF3 thin‐film devices , 1993 .

[24]  A. Koizumi,et al.  Li- and Er-codoped ZnO with enhanced 1.54μm photoemission , 2005 .

[25]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[26]  Ling-Dong Sun,et al.  Low‐Temperature Fabrication of Highly Crystalline SnO2 Nanorods , 2003 .

[27]  N. Wu,et al.  Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides. , 1999, Science.

[28]  Guanghou Wang,et al.  Far-infrared absorption spectra and properties of SnO2 nanorods , 2003 .

[29]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[30]  E. Longo,et al.  Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature , 2003 .

[31]  Peidong Yang,et al.  Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. , 2002, Angewandte Chemie.

[32]  M. Gillan,et al.  Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations , 2000 .

[33]  James L. Gole,et al.  Tin Oxide Nanowires, Nanoribbons, and Nanotubes , 2002 .

[34]  Chao Li,et al.  Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires , 2003 .

[35]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[36]  L. Abello,et al.  Structural Characterization of Nanocrystalline SnO2by X-Ray and Raman Spectroscopy , 1998 .

[37]  Jinke Tang,et al.  Study of quasi-monodisperse In2O3 nanocrystals: synthesis and optical determination. , 2005, Journal of the American Chemical Society.

[38]  Jung-Chul Park,et al.  Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages , 2000 .

[39]  Jung-Chul Park,et al.  Low-Temperature Crystallization and Highly Enhanced Photoluminescence of Gd2-xYxO3:Eu3+ by Li Doping , 2002 .

[40]  Dmitri Golberg,et al.  Laser‐Ablation Growth and Optical Properties of Wide and Long Single‐Crystal SnO2 Ribbons , 2003 .