A Study in Tornado-Like Vortex Dynamics

Abstract Fine-resolution calculations using an axisymmetric numerical model of the flow within a Ward-type vortex chamber are discussed. Particular attention is paid to the vortex-ground interaction. Variations in the swirl ratio S from zero to unity lead to radically different vortex structure in the “corner” region (i.e., near r = z = 0). For S Lt; 1, a concentrated vortex forms in the upper chamber but not in the corner. At moderate S, we observe vortex breakdown, large-amplitude inertial waves, and very intense swirling motion in the corner. When S = 1, the central downdraft penetrates to the lower surface and the vortex breakdown occurs within the boundary layer. These results are consistent with experimental observations and suggest the explanation of a number of observed facets of tornadoes.