Population Receptive Field Estimation Reveals New Retinotopic Maps in Human Subcortex

The human subcortex contains multiple nuclei that govern the transmission of information to and among cortical areas. In the visual domain, these nuclei are organized into retinotopic maps. Because of their small size, these maps have been difficult to precisely measure using phase-encoded functional magnetic resonance imaging, particularly in the eccentricity dimension. Using instead the population receptive field model to estimate the response properties of individual voxels, we were able to resolve two previously unreported retinotopic maps in the thalamic reticular nucleus and the substantia nigra. We measured both the polar angle and eccentricity components, receptive field size and hemodynamic response function delay, in the these nuclei and in the lateral geniculate nucleus, the superior colliculus, and the lateral and intergeniculate pulvinars. The anatomical boundaries of these nuclei were delineated using multiple averaged proton density-weighted images and were used to constrain and confirm the functional activations. Deriving the retinotopic organization of these small, subcortical nuclei is the first step in exploring their response properties and their roles in neural dynamics.

[1]  C. Mckinley Some "Principles" of Organization , 1952 .

[2]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[3]  Denis Dooley,et al.  Atlas of the Human Brain. , 1971 .

[4]  R W Guillery,et al.  Some principles of organization in the dorsal lateral geniculate nucleus. , 1972, Brain, behavior and evolution.

[5]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. , 1972, Journal of neurophysiology.

[6]  M. Cynader,et al.  Receptive-field organization of monkey superior colliculus. , 1972, Journal of neurophysiology.

[7]  M. Cynader,et al.  Comparison of receptive‐field organization of the superior colliculus in Siamese and normal cats , 1972, The Journal of physiology.

[8]  J. Malpeli,et al.  The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta , 1975, The Journal of comparative neurology.

[9]  E. G. Jones,et al.  Some aspects of the organization of the thalamic reticular complex , 2004, The Journal of comparative neurology.

[10]  R. W. Guillery,et al.  Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique , 1977, Brain Research.

[11]  J. E. Albano,et al.  Visual-motor function of the primate superior colliculus. , 1980, Annual review of neuroscience.

[12]  D. B. Bender,et al.  Retinotopic organization of macaque pulvinar. , 1981, Journal of neurophysiology.

[13]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[14]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gaze. , 1983, Journal of neurophysiology.

[15]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[16]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. , 1983, Journal of neurophysiology.

[17]  F. Crick Function of the thalamic reticular complex: the searchlight hypothesis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D L Sparks,et al.  Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. , 1986, Physiological reviews.

[19]  J. K. Harting,et al.  Connectional studies of the primate lateral geniculate nucleus: Distribution of axons arising from the thalamic reticular nucleus of Galago crassicaudatus , 1991, The Journal of comparative neurology.

[20]  J. Bourassa,et al.  Thalamic reticular input to the rat visual thalamus: a single fiber study using biocytin as an anterograde tracer , 1995, Brain Research.

[21]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[22]  C. Scudder,et al.  The microscopic anatomy and physiology of the mammalian saccadic system , 1996, Progress in Neurobiology.

[23]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[24]  Maria V. Sanchez-Vives,et al.  Functional dynamics of GABAergic inhibition in the thalamus. , 1997, Science.

[25]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[26]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[27]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[28]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[29]  Kuei Yuan Tseng,et al.  Substantia nigra pars reticulata units in 6‐hydroxydopamine‐lesioned rats: responses to striatal D2 dopamine receptor stimulation and subthalamic lesions , 2000, The European journal of neuroscience.

[30]  A. B. Bonds,et al.  A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) , 2001, The Journal of physiology.

[31]  A. T. Smith,et al.  Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. , 2001, Cerebral cortex.

[32]  S. Sherman,et al.  Synaptic targets of thalamic reticular nucleus terminals in the visual thalamus of the cat , 2001, The Journal of comparative neurology.

[33]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[34]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[35]  A. B. Bonds,et al.  Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus) , 2002, Visual Neuroscience.

[36]  D. Sparks The brainstem control of saccadic eye movements , 2002, Nature Reviews Neuroscience.

[37]  D. Heck,et al.  Single‐unit Analysis of Substantia Nigra Pars Reticulata Neurons in Freely Behaving Rats with Genetic Absence Epilepsy , 2003, Epilepsia.

[38]  Marlene C. Richter,et al.  Retinotopic Organization and Functional Subdivisions of the Human Lateral Geniculate Nucleus: A High-Resolution Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[39]  Sabine Kastner,et al.  Functional imaging of the human lateral geniculate nucleus and pulvinar. , 2004, Journal of neurophysiology.

[40]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[41]  Gregor Schöner,et al.  Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex , 2004, The Journal of physiology.

[42]  Sabine Kastner,et al.  Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. , 2005, Journal of neurophysiology.

[43]  Roel H. R. Deckers,et al.  Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla , 2005, Magnetic resonance in medicine.

[44]  Timothy Edward John Behrens,et al.  Reliable identification of the auditory thalamus using multi-modal structural analyses , 2006, NeuroImage.

[45]  Robert H Wurtz,et al.  Attentional Modulation of Thalamic Reticular Neurons , 2006, The Journal of Neuroscience.

[46]  P. Cotton,et al.  Contralateral visual hemifield representations in the human pulvinar nucleus. , 2007, Journal of neurophysiology.

[47]  S. Sherman The thalamus is more than just a relay , 2007, Current Opinion in Neurobiology.

[48]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[49]  Sabine Kastner,et al.  Effects of Sustained Spatial Attention in the Human Lateral Geniculate Nucleus and Superior Colliculus , 2009, The Journal of Neuroscience.

[50]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[51]  A. T. Smith,et al.  Dissociating vision and visual attention in the human pulvinar. , 2009, Journal of neurophysiology.

[52]  David Ress,et al.  Topography of covert visual attention in human superior colliculus. , 2010, Journal of neurophysiology.

[53]  R. Wurtz,et al.  Functional Identification of a Pulvinar Path from Superior Colliculus to Cortical Area MT , 2010, The Journal of Neuroscience.

[54]  Keith A Schneider,et al.  Subcortical Mechanisms of Feature-Based Attention , 2011, The Journal of Neuroscience.

[55]  S. Dumoulin,et al.  The Relationship between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture , 2011, The Journal of Neuroscience.

[56]  Kevin C. Chan,et al.  BOLD Temporal Dynamics of Rat Superior Colliculus and Lateral Geniculate Nucleus following Short Duration Visual Stimulation , 2011, PloS one.

[57]  Robert H. Wurtz,et al.  Signals Conveyed in the Pulvinar Pathway from Superior Colliculus to Cortical Area MT , 2011, The Journal of Neuroscience.

[58]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[59]  Antony B. Morland,et al.  Population Receptive Field Dynamics in Human Visual Cortex , 2012, PloS one.

[60]  V. Casagrande,et al.  Retinotopic maps in the pulvinar of bush baby (otolemur garnettii) , 2013, The Journal of comparative neurology.

[61]  Essa Yacoub,et al.  Functional mapping of the magnocellular and parvocellular subdivisions of human LGN , 2014, NeuroImage.

[62]  M. Pinsk,et al.  The Anatomical and Functional Organization of the Human Visual Pulvinar , 2015, The Journal of Neuroscience.

[63]  Hao Zhou,et al.  Layer-specific response properties of the human lateral geniculate nucleus and superior colliculus , 2015, NeuroImage.

[64]  K. Schneider,et al.  Interhemispheric Interactions of the Human Thalamic Reticular Nucleus , 2015, The Journal of Neuroscience.

[65]  G. Paxinos,et al.  Atlas of the Human Brain Ed. 4 , 2016 .

[66]  S. Snyder,et al.  Separate Signals for Target Selection and Movement Specification in the Superior Colliculus , 2022 .