Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae)

Neoseiulus cucumeris is a predatory mite used for biological control of arthropod pests. Mass-reared predators are fed with factitious prey mites such as Tyrophagus putrescentiae. Although some information on certain endosymbionts of N. cucumeris and T. putrescentiae exists, it is unclear whether both species share bacterial communities. The bacterial communities in populations of predator and prey mites, as well as the occurence of potential acaropathogenic bacteria were analyzed. The comparisons were based on the following groups: (i) N. cucumeris mass-production; (ii) N. cucumeris laboratory population with disease symptoms; (iii) T. putrescentiae pure populations and; (iv) T. putrescentiae from rearing units of N. cucumeris. Only 15% of OTUs were present in all samples from predatory and prey mite populations (core OTUs): the intracellular symbionts Wolbachia, Cardinium, plus other Blattabacterium-like, Solitalea-like, and Bartonella-like symbionts. Environmental bacteria were more abundant in predatory mites, while symbiotic bacteria prevailed in prey mites. Relative numbers of certain bacterial taxa were significantly different between the microbiota of prey mites reared with and without N. cucumeris. No significant differences were found in the bacterial communities of healthy N. cucumeris compared to N. cucumeris showing disease symptoms. We did not identify any confirmed acaropathogenic bacteria among microbiota.

[1]  E. Palevsky,et al.  Mites in fungal cultures , 2001, Mycoses.

[2]  V. Lloyd,et al.  Evidence for horizontal transfer of Wolbachia by a Drosophila mite , 2015, Experimental and Applied Acarology.

[3]  J. Kopecký,et al.  Assessment of Bacterial Communities in Thirteen Species of Laboratory-Cultured Domestic Mites (Acari: Acaridida) , 2016, Journal of Economic Entomology.

[4]  J. Hubert,et al.  Feces Derived Allergens of Tyrophagus putrescentiae Reared on Dried Dog Food and Evidence of the Strong Nutritional Interaction between the Mite and Bacillus cereus Producing Protease Bacillolysins and Exo-chitinases , 2016, Front. Physiol..

[5]  B. Croft,et al.  Life-styles of Phytoseiid mites and their roles in biological control. , 1997, Annual review of entomology.

[6]  M. Dicke,et al.  Novel bacterial pathogen Acaricomes phytoseiuli causes severe disease symptoms and histopathological changes in the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae). , 2008, Journal of invertebrate pathology.

[7]  M. Hoy,et al.  Cardinium is associated with reproductive incompatibility in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae). , 2012, Journal of invertebrate pathology.

[8]  M. Inbar,et al.  Almost There: Transmission Routes of Bacterial Symbionts between Trophic Levels , 2009, PloS one.

[9]  Takeo Suzuki,et al.  Production of Antibacterial Compounds Analogous to Chloramphenicol by a n-Paraffin-grown Bacterium , 1972 .

[10]  S. Perlman,et al.  Distribution of the bacterial symbiont Cardinium in arthropods , 2004, Molecular ecology.

[11]  J. Kopecký,et al.  Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities , 2016, Front. Microbiol..

[12]  X. Hong,et al.  Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history , 2016, Scientific Reports.

[13]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[14]  Mihai Pop,et al.  Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples , 2009, PLoS Comput. Biol..

[15]  M. J. Chacko,et al.  Aphids: Their Biology, Natural Enemies and Control , 1991 .

[16]  D. Minz,et al.  The role of the bacterial community in the nutritional ecology of the bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae) , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  J. Kopecký,et al.  Differences in the Bacterial Community of Laboratory and Wild Populations of the Predatory Mite Cheyletus eruditus (Acarina: Cheyletidae) and Bacteria Transmission From Its Prey Acarus siro (Acari: Acaridae) , 2016, Journal of Economic Entomology.

[18]  D. P. Paula,et al.  Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics , 2015, Molecular ecology resources.

[19]  Geoffrey E. Morse,et al.  Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. , 2007, Molecular phylogenetics and evolution.

[20]  E. Stackebrandt,et al.  Nucleic acid techniques in bacterial systematics , 1991 .

[21]  V. Sperandio,et al.  Interactions between the microbiota and pathogenic bacteria in the gut , 2016, Nature.

[22]  N. Moran,et al.  Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont , 2009, Proceedings of the National Academy of Sciences.

[23]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[24]  M. Hoy,et al.  Extended starvation reduced and eliminated Wolbachia, but not Cardinium, from Metaseiulus occidentalis females (Acari: Phytoseiidae): a need to reassess Wolbachia's status in this predatory mite? , 2012, Journal of invertebrate pathology.

[25]  M. Dicke,et al.  PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis (Acari: Phytoseiidae) , 2007 .

[26]  N. L. Kelada,et al.  Control of the European house dust mite Dermatophagoides pteronyssinus (Trouessart) with Bacillus spp , 1991 .

[27]  B. Lemaître,et al.  Bacterial strategies to overcome insect defences , 2008, Nature Reviews Microbiology.

[28]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[29]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[30]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[31]  Maurice W. Sabelis,et al.  Spider mites: their biology, natural enemies and control: vol. 1A , 1985 .

[32]  J. Kopecký,et al.  Detection and Identification of Species-Specific Bacteria Associated with Synanthropic Mites , 2011, Microbial Ecology.

[33]  M. Hoy,et al.  Symbionts, including pathogens, of the predatory mite Metaseiulus occidentalis: current and future analysis methods , 2008, Experimental and Applied Acarology.

[34]  Marti J. Anderson,et al.  PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? , 2013 .

[35]  S. Bjørnson Natural enemies of mass-reared predatory mites (family Phytoseiidae) used for biological pest control , 2008, Experimental and Applied Acarology.

[36]  S. Pekár,et al.  The effect of stored barley cultivars, temperature and humidity on population increase of Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae , 2012, Experimental and Applied Acarology.

[37]  James R. Cole,et al.  Ribosomal Database Project: data and tools for high throughput rRNA analysis , 2013, Nucleic Acids Res..

[38]  J. Hubert,et al.  Dry Dog Food Integrity and Mite Strain Influence the Density-Dependent Growth of the Stored-Product Mite Tyrophagus putrescentiae (Acari: Acaridida) , 2015, Journal of Economic Entomology.

[39]  J. Hubert,et al.  Bacillus thuringiensis var. tenebrionis control of synanthropic mites (Acari: Acaridida) under laboratory conditions , 2009, Experimental and Applied Acarology.

[40]  S. Kambhampati,et al.  Phylogenetic analysis of Blattabacterium, endosymbiotic bacteria from the wood roach, Cryptocercus (Blattodea: Cryptocercidae), including a description of three new species. , 2003, Molecular phylogenetics and evolution.

[41]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[42]  P. Schausberger,et al.  Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey , 2007, Experimental and Applied Acarology.

[43]  A. Aebi,et al.  Arthropod symbioses: a neglected parameter in pest- and disease-control programmes , 2011 .

[44]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[45]  R. Ochoa,et al.  Mites (acari) for pest control , 2003 .

[46]  M. Collins,et al.  Corynebacterium caspium sp. nov., from a Caspian seal (Phoca caspica). , 2004, International journal of systematic and evolutionary microbiology.

[47]  B. Kay,et al.  Impacts of Wolbachia Infection on Predator Prey Relationships: Evaluating Survival and Horizontal Transfer between wMelPop Infected Aedes aegypti and Its Predators , 2012, Journal of medical entomology.

[48]  A. Alleman,et al.  Complete genome sequence of the endosymbiont Blattabacterium from the cockroach Nauphoeta cinerea (Blattodea: Blaberidae). , 2013, Genomics.

[49]  L. van der Geest,et al.  Diseases of Mites , 2000, Experimental & Applied Acarology.

[50]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[51]  P. Schausberger,et al.  Negative Evidence of Wolbachia in the Predaceous Mite Phytoseiulus persimilis , 2005, Experimental & Applied Acarology.

[52]  J. Hubert,et al.  Bartonella-like bacteria carried by domestic mite species , 2014, Experimental and Applied Acarology.

[53]  C. Adley,et al.  Development of a PCR assay for identification of the Bacillus cereus group species , 2010, Journal of applied microbiology.

[54]  X. Hong,et al.  A review of prevalence and phylogeny of the bacterial symbiont Cardinium in mites (subclass: Acari) , 2016, Systematic and Applied Acarology.

[55]  G. J. Moraes,et al.  Evaluation of astigmatid mites as factitious food for rearing four predaceous phytoseiid mites (Acari: Astigmatina; Phytoseiidae) , 2015 .

[56]  P. Ramakers Mass prodution and introduction of Amblyseius mckenziei and A. cucumeris. , 1983 .

[57]  Yun-Ji Kim,et al.  Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host , 2014, Applied and Environmental Microbiology.

[58]  M. Sabelis,et al.  Phytoseiid predators as potential biological control agents for Bemisia tabaci , 2004, Experimental & Applied Acarology.

[59]  J. V. Lenteren,et al.  The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake , 2012, BioControl.

[60]  E. C. Murphy,et al.  Gram-positive anaerobic cocci--commensals and opportunistic pathogens. , 2013, FEMS microbiology reviews.

[61]  P. Murray,et al.  Bacterial 16S ribosomal DNA in house dust mite cultures. , 2005, The Journal of allergy and clinical immunology.

[62]  M. Hoy,et al.  Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae) , 2005 .

[63]  J. Kopecký,et al.  Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae) , 2016, Experimental and Applied Acarology.

[64]  N. Gerardo,et al.  Symbiosis and Insect Diversification: an Ancient Symbiont of Sap-Feeding Insects from the Bacterial Phylum Bacteroidetes , 2005, Applied and Environmental Microbiology.

[65]  F. Wäckers,et al.  Non-target effects of commonly used plant protection products in roses on the predatory mite Euseius gallicus Kreiter & Tixier (Acari: Phytoseidae). , 2016, Pest management science.

[66]  S. Dowd,et al.  Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn's Disease of the Ileum , 2015, PloS one.

[67]  J. Hubert,et al.  Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source , 2008, Experimental and Applied Acarology.

[68]  K. Dittmar,et al.  Evolutionary Relationships among Primary Endosymbionts of the Mealybug Subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae) , 2010, Applied and Environmental Microbiology.

[69]  G. Jan,et al.  Survival and beneficial effects of propionibacteria in the human gut: in vivo and in vitro investigations , 2002 .

[70]  U. Fuhr,et al.  Ciprofloxacin-caffeine: a drug interaction established using in vivo and in vitro investigations. , 1989, The American journal of medicine.

[71]  Sarah L. Westcott,et al.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform , 2013, Applied and Environmental Microbiology.

[72]  The endosymbionts Wolbachia and Cardinium and their effects in three populations of the predatory mite Neoseiulus paspalivorus , 2014, Experimental and Applied Acarology.

[73]  Adam M. Phillippy,et al.  Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.