Model order reduction using sparse coding exemplified for the lid-driven cavity

Basis identification is a critical step in the construction of accurate reduced-order models using Galerkin projection. This is particularly challenging in unsteady flow fields due to the presence of multi-scale phenomena that cannot be ignored and may not be captured using a small set of modes extracted using the ubiquitous proper orthogonal decomposition. This study focuses on this issue by exploring an approach known as sparse coding for the basis identification problem. Compared with proper orthogonal decomposition, which seeks to truncate the basis spanning an observed data set into a small set of dominant modes, sparse coding is used to identify a compact representation that spans all scales of the observed data. As such, the inherently multi-scale bases may improve reduced-order modelling of unsteady flow fields. The approach is examined for a canonical problem of an incompressible flow inside a two-dimensional lid-driven cavity. The results demonstrate that Galerkin reduction of the governing equations using sparse modes yields a significantly improved predictive model of the fluid dynamics.

[1]  H. Abdi,et al.  Principal component analysis , 2010 .

[2]  Earl H. Dowell,et al.  Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation , 2013, Journal of Fluid Mechanics.

[3]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[4]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[5]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[6]  C. Rowley,et al.  Modeling of transitional channel flow using balanced proper orthogonal decomposition , 2007, 0707.4112.

[7]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[8]  Cédric Leblond,et al.  An optimal projection method for the reduced-order modeling of incompressible flows , 2011 .

[9]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[10]  Matthew F. Barone,et al.  Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment , 2014 .

[11]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[12]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[13]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[15]  Charbel Farhat,et al.  Stabilization of projection‐based reduced‐order models , 2012 .

[16]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[17]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[18]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[19]  P. Beran,et al.  Reduced-order modeling: new approaches for computational physics , 2004 .

[20]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[21]  Andrew Y. Ng,et al.  Energy Disaggregation via Discriminative Sparse Coding , 2010, NIPS.

[22]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[23]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[24]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[25]  B. R. Noack,et al.  A low‐dimensional Galerkin method for the three‐dimensional flow around a circular cylinder , 1994 .

[26]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[27]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[28]  Clarence W. Rowley,et al.  Reduced-order models for control of fluids using the eigensystem realization algorithm , 2008, 0907.1907.

[29]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[30]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[31]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[32]  Thomas S. Huang,et al.  Efficient Highly Over-Complete Sparse Coding Using a Mixture Model , 2010, ECCV.

[33]  Dan S. Henningson,et al.  Model Reduction of the Nonlinear Complex Ginzburg-Landau Equation , 2010, SIAM J. Appl. Dyn. Syst..

[34]  Eusebio Valero,et al.  Local POD Plus Galerkin Projection in the Unsteady Lid-Driven Cavity Problem , 2011, SIAM J. Sci. Comput..

[35]  David Zhang,et al.  A Generalized Iterated Shrinkage Algorithm for Non-convex Sparse Coding , 2013, 2013 IEEE International Conference on Computer Vision.

[36]  Rajat Mittal,et al.  A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries , 2008, J. Comput. Phys..