Constraining Exoplanet Metallicities and Aerosols with the Contribution to ARIEL Spectroscopy of Exoplanets (CASE)

Launching in 2028, ESA's 0.64 m^2 Atmospheric Remote-sensing Exoplanet Large-survey (ARIEL) survey of ~1000 transiting exoplanets will build on the legacies of NASA's Kepler and Transiting Exoplanet Survey Satellite (TESS), and complement the James Webb Space Telescope (JWST) by placing its high-precision exoplanet observations into a large, statistically significant planetary population context. With continuous 0.5–7.8 μm coverage from both FGS (0.5–0.6, 0.6–0.81, and 0.81–1.1 μm photometry; 1.1–1.95 μm spectroscopy) and AIRS (1.95–7.80 μm spectroscopy), ARIEL will determine atmospheric compositions and probe planetary formation histories during its 3.5 yr mission. NASA's proposed Contribution to ARIEL Spectroscopy of Exoplanets (CASE) would be a subsystem of ARIEL's Fine Guidance Sensor (FGS) instrument consisting of two visible-to-infrared detectors, associated readout electronics, and thermal control hardware. FGS, to be built by the Polish Academy of Sciences Space Research Centre, will provide both fine guiding and visible to near-infrared photometry and spectroscopy, providing powerful diagnostics of atmospheric aerosol contribution and planetary albedo, which play a crucial role in establishing planetary energy balance. The CASE team presents here an independent study of the capabilities of ARIEL to measure exoplanetary metallicities, which probe the conditions of planet formation, and FGS to measure scattering spectral slopes, which indicate if an exoplanet has atmospheric aerosols (clouds and hazes), and geometric albedos, which help establish planetary climate. Our simulations assume that ARIEL's performance will be 1.3× the photon-noise limit. This value is motivated by current transiting exoplanet observations: Spitzer/IRAC and Hubble/WFC3 have empirically achieved 1.15× the photon-noise limit. One could expect similar performance from ARIEL, JWST, and other proposed future missions such as HabEx, LUVOIR, and Origins. Our design reference mission simulations show that ARIEL could measure the mass–metallicity relationship of its 1000-planet single-visit sample to >7.5σ and that FGS could distinguish between clear, cloudy, and hazy skies and constrain an exoplanet's atmospheric aerosol composition to ≳5σ for hundreds of targets, providing statistically transformative science for exoplanet atmospheres.

[1]  Sarah Kendrew,et al.  Transit spectroscopy with James Webb Space Telescope: systematics, starspots and stitching , 2015, 1501.06349.

[2]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering , 2014, 1410.7611.

[3]  David Charbonneau,et al.  THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS , 2010, 1012.0518.

[4]  Mark Swain,et al.  ON THE DETECTION OF MOLECULES IN THE ATMOSPHERE OF HD 189733b USING HST NICMOS TRANSMISSION SPECTROSCOPY , 2014, 1401.7601.

[5]  Robert T. Zellem,et al.  Forecasting the Impact of Stellar Activity on Transiting Exoplanet Spectra , 2017, 1705.04708.

[6]  Nicolas B. Cowan,et al.  A MODEL FOR THERMAL PHASE VARIATIONS OF CIRCULAR AND ECCENTRIC EXOPLANETS , 2010, 1011.0428.

[7]  J. Davenport,et al.  Possible Bright Starspots on TRAPPIST-1 , 2018, 1803.04543.

[8]  A. Santerne,et al.  Impact of occultations of stellar active regions on transmission spectra: Can occultation of a plage mimic the signature of a blue sky? , 2014, 1407.2066.

[9]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[10]  Nikole K. Lewis,et al.  HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance , 2017, Science.

[11]  B. Demory,et al.  UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS , 2013, 1309.5956.

[12]  Nikole K. Lewis,et al.  3.6 AND 4.5 μm SPITZER PHASE CURVES OF THE HIGHLY IRRADIATED HOT JUPITERS WASP-19b AND HAT-P-7b , 2015, 1512.09342.

[13]  Wolfgang Holota,et al.  Opto-mechanical design of the near infrared spectrograph NIRSpec , 2005, SPIE Optics + Photonics.

[14]  Drake Deming,et al.  REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER , 2016, 1601.05101.

[15]  R. MacDonald,et al.  H2O abundances and cloud properties in ten hot giant exoplanets , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  C. F. Lillie,et al.  Characterizing Transiting Planet Atmospheres through 2025 , 2015, 1502.00004.

[17]  Björn Benneke,et al.  A map of the large day–night temperature gradient of a super-Earth exoplanet , 2016, Nature.

[18]  J. Livingston,et al.  A CHARACTERISTIC TRANSMISSION SPECTRUM DOMINATED BY H2O APPLIES TO THE MAJORITY OF HST/WFC3 EXOPLANET OBSERVATIONS , 2015, 1512.00151.

[19]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[20]  J. Winn,et al.  THE STELLAR OBLIQUITY, PLANET MASS, AND VERY LOW ALBEDO OF QATAR-2 FROM K2 PHOTOMETRY , 2016, 1609.01314.

[21]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[22]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[23]  D. Kipping,et al.  Detection of visible light from the darkest world , 2011, 1108.2297.

[24]  S. Aigrain,et al.  Hst hot jupiter transmission spectral survey: Detection of water in HAT-P-1b from WFC3 near-IR spatial scan observations , 2013, 1308.2106.

[25]  Neil Rowlands,et al.  The JWST Fine Guidance Sensor (FGS) and Near-Infrared Imager and Slitless Spectrograph (NIRISS) , 2012, Other Conferences.

[26]  Nikole K. Lewis,et al.  The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint , 2017, 1711.10529.

[27]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[28]  D. Deming,et al.  SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b , 2015, 1505.01490.

[29]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[30]  B. Smalley,et al.  Spitzer 3.6 and 4.5 μm full-orbit light curves of WASP-18 , 2012, 1210.5585.

[31]  Jacob L. Bean,et al.  SPITZER PHASE CURVE CONSTRAINTS FOR WASP-43b AT 3.6 AND 4.5 μm , 2016, 1608.00056.

[32]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[33]  Nikole K. Lewis,et al.  ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b , 2013, 1302.5084.

[34]  Avi Shporer,et al.  STUDYING ATMOSPHERE-DOMINATED HOT JUPITER KEPLER PHASE CURVES: EVIDENCE THAT INHOMOGENEOUS ATMOSPHERIC REFLECTION IS COMMON , 2015, 1504.00498.

[35]  S Komonjinda,et al.  Exoplanetary atmosphere target selection in the era of comparative planetology , 2019, Monthly Notices of the Royal Astronomical Society.

[36]  M. Marley,et al.  UNIFORM ATMOSPHERIC RETRIEVAL ANALYSIS OF ULTRACOOL DWARFS. I. CHARACTERIZING BENCHMARKS, Gl 570D AND HD 3651B , 2015, 1504.06670.

[37]  A. P. Hatzes,et al.  Transit mapping of a starspot on CoRoT-2. Probing a stellar surface with planetary transits , 2009, 0906.4140.

[38]  Joseph E. Rodriguez,et al.  A Comparative Study of WASP-67 b and HAT-P-38 b from WFC3 Data , 2017, 1712.03384.

[39]  Gautam Vasisht,et al.  Quantifying the Impact of Spectral Coverage on the Retrieval of Molecular Abundances from Exoplanet Transmission Spectra , 2017, 1705.05468.

[40]  Jacob L. Bean,et al.  HUBBLE SPACE TELESCOPE NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B , 2014, 1403.4602.

[41]  T. Evans,et al.  The HST PanCET Program: Hints of Na i and Evidence of a Cloudy Atmosphere for the Inflated Hot Jupiter WASP-52b , 2018, The Astronomical Journal.

[42]  Sara Seager,et al.  THE HIGH ALBEDO OF THE HOT JUPITER KEPLER-7 b , 2011, 1105.5143.

[43]  Mark S. Giampapa,et al.  The Transit Light Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting Planets , 2017, 1711.05691.

[44]  A. Vidal-Madjar,et al.  Rayleigh scattering by H$\mathsf{_2}$ in the extrasolar planet HD 209458b , 2008, 0805.0595.

[45]  U. Munari,et al.  The GAPS programme with HARPS-N at TNG. V. A comprehensive analysis of the XO-2 stellar and planetary systems , 2015, 1501.01424.

[46]  Cfa,et al.  IMPACT OF ATMOSPHERIC REFRACTION: HOW DEEPLY CAN WE PROBE EXO-EARTH'S ATMOSPHERES DURING PRIMARY ECLIPSE OBSERVATIONS? , 2013, 1312.6625.

[47]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[48]  Vivien Parmentier,et al.  TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS , 2016, 1602.03088.

[49]  N. Crouzet,et al.  Water Vapor in the Spectrum of the Extrasolar Planet HD 189733b. II. The Eclipse , 2014, 1409.4000.

[50]  L. Kaltenegger,et al.  Refraction in planetary atmospheres: improved analytical expressions and comparison with a new ray-tracing algorithm , 2015, 1507.02107.

[51]  T. Evans,et al.  DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE , 2016, 1604.02310.

[52]  I. Ribas,et al.  Water in HD 209458b's atmosphere from 3.6 - 8 microns IRAC photometric observations in primary transit , 2009, 0909.0185.

[53]  Adriana Silva-Valio,et al.  Estimating Stellar Rotation from Starspot Detection during Planetary Transits , 2008, 0808.2156.

[54]  E. Agol,et al.  Phase Curves of WASP-33b and HD 149026b and a New Correlation between Phase Curve Offset and Irradiation Temperature , 2017, 1710.07642.

[55]  T. Zingales,et al.  Near-IR Transmission Spectrum of HAT-P-32b using HST/WFC3 , 2017, 1802.10010.

[56]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[57]  Maryvonne Gerin,et al.  The Origins Space Telescope , 2018, Optical Engineering + Applications.

[58]  Enzo Pascale,et al.  UvA-DARE (Digital Academic Repository) A chemical survey of exoplanets with ARIEL , 2022 .

[59]  M. Swain,et al.  An analytical formalism accounting for clouds and other `surfaces' for exoplanet transmission spectroscopy , 2016, 1610.02049.

[60]  John Krist,et al.  Science opportunities with the near-IR camera (NIRCam) on the James Webb Space Telescope (JWST) , 2012, Other Conferences.

[61]  Robert T. Zellem,et al.  A Framework for Prioritizing the TESS Planetary Candidates Most Amenable to Atmospheric Characterization , 2018, Publications of the Astronomical Society of the Pacific.

[62]  J. Barstow,et al.  HST PanCET Program: A Cloudy Atmosphere for the Promising JWST Target WASP-101b , 2017, 1701.00843.

[63]  E. Agol,et al.  3.6 AND 4.5 μm PHASE CURVES OF THE HIGHLY IRRADIATED ECCENTRIC HOT JUPITER WASP-14b , 2015, 1505.03158.

[64]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[65]  C. Griffith,et al.  Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[66]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[67]  Robert T. Zellem,et al.  XO-2b: A HOT JUPITER WITH A VARIABLE HOST STAR THAT POTENTIALLY AFFECTS ITS MEASURED TRANSIT DEPTH , 2015, 1505.01063.

[68]  J. Fortney,et al.  Detection of a westward hotspot offset in the atmosphere of hot gas giant CoRoT-2b , 2018, 1801.06548.

[69]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[70]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[71]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[72]  J. Fortney,et al.  Connecting Giant Planet Atmosphere and Interior Modeling: Constraints on Atmospheric Metal Enrichment , 2018, The Astrophysical Journal.

[73]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[74]  K. F. Huber,et al.  How stellar activity affects the size estimates of extrasolar planets , 2009, 0906.3604.

[75]  P. McCullough,et al.  PROBING THE TERMINATOR REGION ATMOSPHERE OF THE HOT-JUPITER XO-1b WITH TRANSMISSION SPECTROSCOPY , 2010, 1002.2434.

[76]  G. Tucker,et al.  Community Targets of JWST’s Early Release Science Program: Evaluation of WASP-63b , 2017, The Astronomical Journal.

[77]  M. Griffin,et al.  The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) , 2015, Astronomical Telescopes + Instrumentation.

[78]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[79]  G. Orton,et al.  Methane and its isotopologues on Saturn from Cassini/CIRS observations , 2009 .

[80]  Joshua N. Winn,et al.  THE TRANSIT LIGHT CURVE PROJECT. XIII. SIXTEEN TRANSITS OF THE SUPER-EARTH GJ 1214b , 2010, 1012.0376.

[81]  D. Apai,et al.  ACCESS: a featureless optical transmission spectrum for WASP-19b from Magellan/IMACS , 2018, Monthly Notices of the Royal Astronomical Society.

[82]  S. Seager,et al.  HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER-EARTHS , 2013, 1306.6325.

[83]  G. Vasisht,et al.  THERMOCHEMICAL AND PHOTOCHEMICAL KINETICS IN COOLER HYDROGEN-DOMINATED EXTRASOLAR PLANETS: A METHANE-POOR GJ436b? , 2011, 1104.3183.

[84]  Yan B'etr'emieux Effects of refraction on transmission spectra of gas giants: decrease of the Rayleigh scattering slope and breaking of retrieval degeneracies , 2015, 1509.03984.

[85]  Nikku Madhusudhan,et al.  Atmospheric signatures of giant exoplanet formation by pebble accretion , 2016, 1611.03083.

[86]  Sara Seager,et al.  The Very Low Albedo of an Extrasolar Planet: MOST Space-based Photometry of HD 209458 , 2007, 0711.4111.

[87]  Nikolay Nikolov,et al.  A library of ATMO forward model transmission spectra for hot Jupiter exoplanets , 2017, 1710.10269.

[88]  Jonathan Fortney,et al.  Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.

[89]  T. Komacek,et al.  Atmospheric Circulation of Hot Jupiters: Dayside–Nightside Temperature Differences. II. Comparison with Observations , 2016, 1610.03893.

[90]  Nikku Madhusudhan,et al.  NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST/WFC3 SPECTROSCOPY , 2016, 1605.08810.

[91]  D. Ehrenreich,et al.  Hubble PanCET: an isothermal day-side atmosphere for the bloated gas-giant HAT-P-32Ab , 2017, 1711.00859.

[92]  N. Crouzet,et al.  WATER VAPOR IN THE SPECTRUM OF THE EXTRASOLAR PLANET HD 189733b. I. THE TRANSIT , 2014, 1407.2462.

[93]  Drake Deming,et al.  Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet , 2014, Nature.

[94]  Nicolas B. Cowan,et al.  Balancing the energy budget of short-period giant planets: evidence for reflective clouds and optical absorbers , 2015, 1502.06970.

[95]  James E. Owen,et al.  KEPLER PLANETS: A TALE OF EVAPORATION , 2013, 1303.3899.

[96]  M. Tomasko,et al.  The haze and methane distributions on Uranus from HST-STIS spectroscopy , 2009 .

[97]  Robert T. Zellem,et al.  THE 4.5 μm FULL-ORBIT PHASE CURVE OF THE HOT JUPITER HD 209458b , 2014, 1405.5923.

[98]  A. Burrows,et al.  THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS , 2011, 1112.0574.

[99]  Kyle L. Luther,et al.  CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST , 2015, 1511.05528.

[100]  Drake Deming,et al.  A Search for a Sub-Earth-Sized Companion to GJ 436 and a Novel Method to Calibrate Warm Spitzer IRAC Observations , 2010, 1009.0755.

[101]  Enzo Pascale,et al.  An Updated Study of Potential Targets for Ariel , 2019, The Astronomical Journal.

[102]  K. Stassun,et al.  NEAR-INFRARED EMISSION SPECTRUM OF WASP-103B USING HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 , 2016, 1611.09272.

[103]  C. Hansen,et al.  Features in the broad-band eclipse spectra of exoplanets: signal or noise? , 2014, 1402.6699.

[104]  Markus Loose,et al.  Teledyne Imaging Sensors: infrared imaging technologies for astronomy and civil space , 2008, Astronomical Telescopes + Instrumentation.

[105]  Sara Seager,et al.  The Habitable Exoplanet Observatory , 2018, Nature Astronomy.

[106]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[107]  K. von Braun,et al.  The NASA Exoplanet Archive: Data and Tools for Exoplanet Research , 2013, 1307.2944.

[108]  Nicolas B. Cowan,et al.  Inverting Phase Functions to Map Exoplanets , 2008, 0803.3622.

[109]  D. Apai,et al.  ACCESS I. AN OPTICAL TRANSMISSION SPECTRUM OF GJ 1214b REVEALS A HETEROGENEOUS STELLAR PHOTOSPHERE , 2016, 1612.00228.

[110]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[111]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[112]  E. al.,et al.  Detectors for the James Webb Space Telescope near-infrared spectrograph. I. Readout mode, noise model, and calibration considerations , 2007, 0706.2344.

[113]  D. Apai,et al.  Retrieval of planetary and stellar properties in transmission spectroscopy with Aura , 2018, Monthly Notices of the Royal Astronomical Society.

[114]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[115]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[116]  L. Sromovsky,et al.  Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.

[117]  B. Fegley,et al.  Chemical Models of the Deep Atmospheres of Jupiter and Saturn , 1994 .

[118]  Nikole K. Lewis,et al.  SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE , 2012, 1301.6763.

[119]  Jacob L. Bean,et al.  Global Climate and Atmospheric Composition of the Ultra-hot Jupiter WASP-103b from HST and Spitzer Phase Curve Observations , 2018, The Astronomical Journal.

[120]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[121]  Roxana Lupu,et al.  FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS , 2016, 1610.07632.

[122]  T. Evans,et al.  The Very Low Albedo of WASP-12b from Spectral Eclipse Observations with Hubble , 2017, 1709.04461.

[123]  Drake Deming,et al.  THE HOT-JUPITER KEPLER-17b: DISCOVERY, OBLIQUITY FROM STROBOSCOPIC STARSPOTS, AND ATMOSPHERIC CHARACTERIZATION , 2011, 1107.5750.

[124]  Jacob L. Bean,et al.  A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION , 2015, 1504.05586.

[125]  Nikole K. Lewis,et al.  An ultrahot gas-giant exoplanet with a stratosphere , 2017, Nature.

[126]  Markus Loose,et al.  HAWAII-2RG: a 2k x 2k CMOS multiplexer for low and high background astronomy applications , 2003, SPIE Astronomical Telescopes + Instrumentation.

[127]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[128]  Ray Jayawardhana,et al.  CHANGING PHASES OF ALIEN WORLDS: PROBING ATMOSPHERES OF KEPLER PLANETS WITH HIGH-PRECISION PHOTOMETRY , 2014, 1407.2245.

[129]  Drake Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2014, Nature.

[130]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[131]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[132]  J. Morse,et al.  A Comprehensive Study of Kepler Phase Curves and Secondary Eclipses: Temperatures and Albedos of Confirmed Kepler Giant Planets , 2014, 1404.4348.

[133]  Drake Deming,et al.  3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b , 2012, 1206.6887.