Constraint-driven Co-Clustering of 0/1 Data

This describes our co-clustering method that exploit local patterns. We introduce instance-level constraints and discuss how they can be pushed at the local level before the agglomeration process.

[1]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[2]  Luc De Raedt,et al.  Constraint-Based Pattern Set Mining , 2007, SDM.

[3]  Vipin Kumar,et al.  Support envelopes: a technique for exploring the structure of association patterns , 2004, KDD.

[4]  Céline Robardet,et al.  Efficient Local Search in Conceptual Clustering , 2001, Discovery Science.

[5]  Wynne Hsu,et al.  Integrating Classification and Association Rule Mining , 1998, KDD.

[6]  Inderjit S. Dhillon,et al.  A generalized maximum entropy approach to bregman co-clustering and matrix approximation , 2004, J. Mach. Learn. Res..

[7]  Walter D. Fisher On Grouping for Maximum Homogeneity , 1958 .

[8]  E. Salmon Gene Expression During the Life Cycle of Drosophila melanogaster , 2002 .

[9]  Jean-François Boulicaut,et al.  Mining a New Fault-Tolerant Pattern Type as an Alternative to Formal Concept Discovery , 2006, ICCS.

[10]  Dan Klein,et al.  From Instance-level Constraints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering , 2002, ICML.

[11]  Jean-François Boulicaut,et al.  Constraint-based concept mining and its application to microarray data analysis , 2005, Intell. Data Anal..

[12]  Kiri Wagstaff,et al.  Value, Cost, and Sharing: Open Issues in Constrained Clustering , 2006, KDID.

[13]  Ruggero G. Pensa,et al.  Towards Constrained Co-clustering in Ordered 0/1 Data Sets , 2006, ISMIS.

[14]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[15]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .

[16]  Raymond J. Mooney,et al.  A probabilistic framework for semi-supervised clustering , 2004, KDD.

[17]  S. S. Ravi,et al.  Clustering with Constraints: Feasibility Issues and the k-Means Algorithm , 2005, SDM.

[18]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[19]  Inderjit S. Dhillon,et al.  Information-theoretic co-clustering , 2003, KDD '03.

[20]  S. S. Ravi,et al.  Agglomerative Hierarchical Clustering with Constraints: Theoretical and Empirical Results , 2005, PKDD.

[21]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[22]  Ruggero G. Pensa,et al.  A Bi-clustering Framework for Categorical Data , 2005, PKDD.

[23]  Heikki Mannila,et al.  Levelwise Search and Borders of Theories in Knowledge Discovery , 1997, Data Mining and Knowledge Discovery.