Realistic limits to computation I. Physical limits

The ultimate limits of computation have been determined in the hypothesis that computation is a physical process occurring in a medium immersed in a thermal reservoir at assigned (room) temperature and thus obeying the underlying physical laws. Whichever is the information carrier, the computational figure of merit is inherently reduced by the need of transforming the microscopic computation outcome into a macroscopic event. The resulting loss of performance has been estimated in the hypothesis that the microscopic state is sensed with an apparatus undergoing repeated measurements.

[1]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[2]  Gianfranco Cerofolini,et al.  Realistic limits to computation. II. The technological side , 2006 .

[3]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[4]  D. Bohm,et al.  Time in the Quantum Theory and the Uncertainty Relation for Time and Energy , 1961 .

[5]  Decoherence in quantum systems , 2005, IEEE Transactions on Nanotechnology.

[6]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[7]  Kaustav Banerjee,et al.  Interconnect limits on gigascale integration (GSI) in the 21st century , 2001, Proc. IEEE.

[8]  J. E. Brewer,et al.  Extending the road beyond CMOS , 2002 .

[9]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[10]  Paul S. Peercy,et al.  The drive to miniaturization , 2000, Nature.

[11]  Jeffrey A. Davis,et al.  The fundamental limit on binary switching energy for terascale integration (TSI) , 2000, IEEE Journal of Solid-State Circuits.

[12]  R W Keyes,et al.  Physical Limits in Semiconductor Electronics , 1977, Science.

[13]  R. McCreery,et al.  Molecular Electronic Junctions , 2004 .

[14]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[15]  W. H. Zurek,et al.  Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.

[16]  P. Packan,et al.  Pushing the Limits , 1999, Science.

[17]  G. Ferla,et al.  Toward a Hybrid Micro-nanoelectronics , 2002 .

[18]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[19]  Physical limits of integration and information processing in molecular systems , 1989 .

[20]  G. Cerofolini,et al.  A hybrid micro-nano-molecular route for nonvolatile memories , 2006 .

[21]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[22]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[24]  R. W. Keyes,et al.  Fundamental limits of silicon technology , 2001, Proc. IEEE.

[25]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[26]  R.W. Keyes,et al.  Fundamental limits in digital information processing , 1981, Proceedings of the IEEE.

[27]  L. Renna,et al.  A hybrid approach to nanoelectronics , 2005 .