Exploring cosmic origins with CORE: Inflation

We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60–600 GHz. CORE will have an aggregate noise sensitivity of 1.7 μK⋅ arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series “Exploring Cosmic Origins with CORE.” We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10−3 level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10−3 level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the fNLlocal < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.

T. Kitching | H. Kurki-Suonio | J. Bartlett | M. Kunz | J. Lesgourgues | A. Melchiorri | Z. Cai | R. G'enova-Santos | E. Hivon | A. Banday | A. Lasenby | A. Lewis | A. Challinor | S. Matarrese | P. Bernardis | S. Hanany | S. Masi | J. Diego | V. Poulin | J. Garc'ia-Bellido | S. Clesse | M. Ashdown | M. Quartin | R. Weygaert | T. Kisner | A. Starobinsky | C. Martins | M. Bersanelli | A. Bonaldi | C. Burigana | G. Zotti | J. Delabrouille | J. Gonz'alez-Nuevo | C. Hern'andez-Monteagudo | M. Liguori | M. L'opez-Caniego | B. Maffei | N. Mandolesi | E. Mart'inez-Gonz'alez | P. Natoli | D. Paoletti | G. Patanchon | M. Piat | G. Polenta | M. Remazeilles | A. Renzi | M. Tomasi | M. Tucci | J. Valiviita | B. Tent | P. Vielva | N. Vittorio | S. Feeney | S. Galli | M. Lattanzi | J. Melin | N. Trappe | Will Handley | A. Pollo | N. Bartolo | J. Chluba | E. D. Valentino | J. Fergusson | M. Gerbino | J. Rubiño-Martín | L. Salvati | T. Trombetti | G. Pisano | G. d'Alessandro | L. Lamagna | A. Paiella | A. Tartari | G. Gasperis | K. Kiiveri | V. Lindholm | D. McCarthy | G. D'Amico | E. Pajer | D. Baumann | A. Notari | S. Ferraro | M. Negrello | C. Tucker | J. Greenslade | A. Monfardini | M. Crook | C. Ringeval | V. Vennin | M. Calvo | E. Kovetz | G. Luzzi | M. Roman | S. Grandis | F. Arroja | M. Ballardini | S. Basak | R. Fernández-Cobos | D. Molinari | F. Forastieri | L. Polastri | R. Allison | J. Errard | C. Hervías-Caimapo | F. Boulanger | F. Oppizzi | D. K. Hazra | Core Collaboration Fabio Finelli | M. Bucher | A. Ach'ucarro | M. Hindmarsh | R. Banerji | J. Baselmans | Julian Borril | F. Bouchet | T. Brinckmann | A. Buzzelli | C. Carvalho | G. Castellano | I. Colantoni | V. Desjacques | S. Hagstotz | M. Hills | Bin Hu | J. Lizarraga | S. Patil | A. Ravenni | D. Roest | G. Tasinato | J. Torrado | J. Urrestilla | K. Young | G. D’Amico | G. D’Alessandro | B. Hu

[1]  Anonymous,et al.  Erratum: Tests of General Relativity with GW150914 [Phys. Rev. Lett. 116, 221101 (2016)]. , 2018, Physical review letters.

[2]  Jérôme Martin,et al.  ASPIC: Accurate Slow-roll Predictions for Inflationary Cosmology , 2018 .

[3]  C. A. Oxborrow,et al.  Planck intermediate results , 2017, Astronomy & Astrophysics.

[4]  P. A. R. Ade,et al.  Exploring cosmic origins with CORE: Survey requirements and mission design , 2017, Journal of Cosmology and Astroparticle Physics.

[5]  S. Masi,et al.  Exploring cosmic origins with CORE: The instrument , 2017, 1705.02170.

[6]  S. Masi,et al.  Exploring cosmic origins with CORE: B-mode component separation , 2017, 1704.04501.

[7]  Peter Ade,et al.  Exploring cosmic origins with CORE: Cosmological parameters , 2016, 1612.00021.

[8]  S. Masi,et al.  Exploring cosmic origins with CORE: Mitigation of systematic effects , 2017, 1707.04224.

[9]  Peter Ade,et al.  Exploring cosmic origins with CORE: Gravitational lensing of the CMB , 2017, 1707.02259.

[10]  T. Kitching,et al.  Exploring cosmic origins with CORE: Effects of observer peculiar motion , 2017, 1704.05764.

[11]  T. Kitching,et al.  Exploring cosmic origins with CORE: Cluster science , 2017, 1703.10456.

[12]  M. Kunz,et al.  Erratum: Energy-momentum correlations for Abelian Higgs cosmic strings [Phys. Rev. D 93 , 085014 (2016)] , 2017 .

[13]  J. Valiviita Power Spectra Based Planck Constraints on Compensated Isocurvature, and Forecasts for LiteBIRD and CORE Space Missions , 2017, 1701.07039.

[14]  A. Lasenby,et al.  Constraining the dark energy equation of state using Bayes theorem and the Kullback–Leibler divergence , 2016, 1607.00270.

[15]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[16]  L. Senatore,et al.  Productive interactions: heavy particles and non-Gaussianity , 2016, Journal of Cosmology and Astroparticle Physics.

[17]  Shahab Joudaki,et al.  CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics , 2016, 1601.05786.

[18]  O. Dor'e,et al.  Designing an inflation galaxy survey: How to measure σ(f_(NL))∼1 using scale-dependent galaxy bias , 2014, 1412.3854.

[19]  A. Pourtsidou Synergistic tests of inflation , 2016, 1612.05138.

[20]  Olivier Dor'e,et al.  Optimizing future experiments of cosmic far-infrared background: a principal component approach , 2016, 1612.02474.

[21]  Bin Hu,et al.  Robust predictions for an oscillatory bispectrum in Planck 2015 data from transient reductions in the speed of sound of the inflaton , 2016, 1611.10350.

[22]  J. Walcher,et al.  Exponential networks and representations of quivers , 2016, 1611.06177.

[23]  Evolution of CMB spectral distortion anisotropies and tests of primordial non-Gaussianity , 2016, 1610.08711.

[24]  S. Ferrara,et al.  Seven-Disk Manifold, alpha-attractors and B-modes , 2016, 1610.04163.

[25]  L. Senatore,et al.  The Supersymmetric Effective Field Theory of Inflation , 2016, 1610.04227.

[26]  R. B. Partridge,et al.  Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps , 2016, 1609.07263.

[27]  Jérôme Martin,et al.  Shortcomings of New Parametrizations of Inflation , 2016, 1609.04739.

[28]  M. Kunz,et al.  New CMB constraints for Abelian Higgs cosmic strings , 2016, 1609.03386.

[29]  Aamir Ali,et al.  The Cosmology Large Angular Scale Surveyor , 2016, Astronomical Telescopes + Instrumentation.

[30]  A. G. Vieregg,et al.  BICEP3 performance overview and planned Keck Array upgrade , 2016, Astronomical Telescopes + Instrumentation.

[31]  Hayden Lee,et al.  Non-Gaussianity as a particle detector , 2016, Journal of High Energy Physics.

[32]  L. Moscardini,et al.  Probing primordial features with future galaxy surveys , 2016, 1606.03747.

[33]  Martin Kunz,et al.  Cosmic infrared background anisotropies as a window into primordial non-Gaussianity , 2016, 1606.02323.

[34]  K. Koyama,et al.  Constraining curvatonic reheating , 2016, 1606.01223.

[35]  O. Mena,et al.  Primordial power spectrum features in phenomenological descriptions of inflation , 2016, 1606.00842.

[36]  P. Creminelli,et al.  Tensor squeezed limits and the Higuchi bound , 2016, 1605.08424.

[37]  L. Verde,et al.  Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure , 2016, 1605.06637.

[38]  C. A. Oxborrow,et al.  Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.

[39]  C. A. Oxborrow,et al.  Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.

[40]  George F. Smoot,et al.  Primordial features and Planck polarization , 2016, 1605.02106.

[41]  A. Melchiorri,et al.  Constraints on the running of the running of the scalar tilt from CMB anisotropies and spectral distortions , 2016 .

[42]  G. Palma,et al.  Consistency relations for sharp inflationary non-Gaussian features , 2016, 1604.03533.

[43]  G. Hilton,et al.  LiteBIRD: Mission Overview and Focal Plane Layout , 2016 .

[44]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[45]  A. Ross,et al.  Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions , 2016, 1603.06814.

[46]  Jérôme Martin,et al.  Information gain on reheating: the one bit milestone , 2016, 1603.02606.

[47]  Yacine Ali-Haimoud,et al.  CMB B -mode non-Gaussianity , 2016, 1603.02243.

[48]  A. Moss,et al.  CMB constraints on cosmic strings and superstrings , 2016, 1603.01275.

[49]  Yunsong Piao,et al.  Propagating speed of primordial gravitational waves and inflation , 2016, 1602.05431.

[50]  A. Melchiorri,et al.  μ distortions or running: A guaranteed discovery from CMB spectrometry , 2016, 1602.05578.

[51]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[52]  M. Zaldarriaga,et al.  LSS constraints with controlled theoretical uncertainties , 2016, 1602.00674.

[53]  G. Palma,et al.  Sound Speed of Primordial Fluctuations in Supergravity Inflation. , 2016, Physical review letters.

[54]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[55]  M. Kamionkowski,et al.  Search for compensated isocurvature perturbations with Planck power spectra , 2015, 1511.04441.

[56]  Ely D. Kovetz,et al.  The Quest for B Modes from Inflationary Gravitational Waves , 2015, 1510.06042.

[57]  M. Kunz,et al.  Energy-momentum correlations for Abelian Higgs cosmic strings , 2015, 1510.05006.

[58]  B. Wandelt,et al.  Joint resonant CMB power spectrum and bispectrum estimation , 2015, 1510.01756.

[59]  K. Turzyński,et al.  Geometrical Destabilization of Inflation. , 2015, Physical review letters.

[60]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[61]  Hayden Lee,et al.  Signs of Analyticity in Single-Field Inflation , 2015, 1502.07304.

[62]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[63]  Peter A. R. Ade,et al.  The Primordial Inflation Polarization Explorer (PIPER) , 2010, Astronomical Telescopes + Instrumentation.

[64]  S. Ferrara,et al.  Seven-Disk Manifold, α-attractors and B-modes , 2016 .

[65]  A. Gilbert,et al.  The Polarbear-2 and the Simons Array Experiments , 2015, 1512.07299.

[66]  K. Koyama,et al.  Inflation with an extra light scalar field after Planck , 2015, 1512.03403.

[67]  Jérôme Martin,et al.  Cosmic Inflation and Model Comparison , 2015 .

[68]  N. Bartolo,et al.  Distinctive signatures of space-time diffeomorphism breaking in EFT of inflation , 2015, 1511.07414.

[69]  M. Drewes What can the CMB tell about the microphysics of cosmic reheating? , 2015, 1511.03280.

[70]  M. Liguori,et al.  Primordial trispectra and CMB spectral distortions , 2015, 1511.01474.

[71]  Yunsong Piao,et al.  Is there an effect of a nontrivial $c_T$ during inflation? , 2015, 1510.08716.

[72]  Edward J. Wollack,et al.  Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.

[73]  F. Bouchet,et al.  Large scale CMB anomalies from thawing cosmic strings , 2015, 1510.01916.

[74]  B. Tent,et al.  The binned bispectrum estimator: template-based and non-parametric CMB non-Gaussianity searches , 2015, 1509.08107.

[75]  Hiranya V. Peiris,et al.  Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization , 2015, 1509.06770.

[76]  Wen Zhao,et al.  Forecasting sensitivity on tilt of power spectrum of primordial gravitational waves after Planck satellite , 2015, 1509.02676.

[77]  Hayden Lee,et al.  High-scale inflation and the tensor tilt , 2015, 1507.07250.

[78]  G. Gelmini,et al.  Low reheating temperatures in monomial and binomial inflationary models , 2015 .

[79]  Measuring primordial anisotropic correlators with CMB spectral distortions , 2015, 1506.06670.

[80]  M. Kamionkowski,et al.  Primordial non-gaussianity from the bispectrum of 21-cm fluctuations in the dark ages , 2015, 1506.04152.

[81]  A. Lasenby,et al.  polychord: next-generation nested sampling , 2015, 1506.00171.

[82]  J. Hamann,et al.  Features and new physical scales in primordial observables: Theory and observation , 2015, 1505.01834.

[83]  G. Gelmini,et al.  Low reheating temperatures in monomial and binomial inflationary potentials , 2015, 1504.03768.

[84]  M. Kamionkowski,et al.  Probing the scale dependence of non-Gaussianity with spectral distortions of the cosmic microwave background , 2015, 1504.00675.

[85]  Y. Welling,et al.  On the viability of m2ϕ2 and natural inflation , 2015, 1503.07486.

[86]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[87]  M. Zaldarriaga,et al.  Detecting primordial B-modes after Planck , 2015, 1502.01983.

[88]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[89]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[90]  R. W. Ogburn,et al.  Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.

[91]  Kendrick M. Smith,et al.  Optimal analysis of the CMB trispectrum , 2015, 1502.00635.

[92]  M. P. Hobson,et al.  polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.

[93]  E. Shellard,et al.  Polyspectra searches for sharp oscillatory features in cosmic microwave sky data , 2014, 1412.6152.

[94]  M. Zaldarriaga,et al.  Implications of the scalar tilt for the tensor-to-scalar ratio , 2014, 1412.0678.

[95]  M. Zaldarriaga,et al.  Gravitational waves and the scale of inflation , 2014, 1412.0665.

[96]  Jérôme Martin,et al.  Observing inflationary reheating. , 2014, Physical Review Letters.

[97]  K. Sinha,et al.  How well can we really determine the scale of inflation , 2014, 1410.0016.

[98]  R. Maartens,et al.  Probing primordial non-Gaussianity with SKA galaxy redshift surveys: a fully relativistic analysis , 2014, 1409.8286.

[99]  Mohammad Akhshik Clustering fossils in solid inflation , 2014, 1409.3004.

[100]  J. Yokoyama,et al.  Reheating processes after Starobinsky inflation in old-minimal supergravity , 2014, 1411.6746.

[101]  R. B. Barreiro,et al.  Planck 2013 results , 2014 .

[102]  D. Hanson,et al.  PROSPECTS FOR DELENSING THE COSMIC MICROWAVE BACKGROUND FOR STUDYING INFLATION , 2014, 1410.0691.

[103]  D. Wands,et al.  Generalised tensor fluctuations and inflation , 2014, 1409.6568.

[104]  J. García-Bellido,et al.  Lyth bound of inflation with a tilt , 2014, 1408.6839.

[105]  Andrei Linde,et al.  Cosmology with nilpotent superfields , 2014, 1408.4096.

[106]  F. Vernizzi,et al.  Resilience of the standard predictions for primordial tensor modes. , 2014, Physical review letters.

[107]  Jérôme Martin,et al.  How well can future CMB missions constrain cosmic inflation? , 2014, 1407.4034.

[108]  J. Yokoyama,et al.  Effects of cosmic strings with delayed scaling on CMB anisotropy , 2014, 1407.2951.

[109]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[110]  Daniel Baumann,et al.  B-modes and the nature of inflation , 2014, 1407.2621.

[111]  Peter A. R. Ade,et al.  The Primordial Inflation Polarization Explorer (PIPER) , 2014, Astronomical Telescopes and Instrumentation.

[112]  T. Souradeep,et al.  Primordial power spectrum from Planck , 2014, 1406.4827.

[113]  R. Trotta,et al.  Compatibility of planck and BICEP2 results in light of inflation , 2014, 1405.7272.

[114]  M. Kamionkowski,et al.  Reheating constraints to inflationary models. , 2014, Physical review letters.

[115]  R. Cai,et al.  Reconstruction of the primordial power spectra with Planck and BICEP2 data , 2014, 1404.3690.

[116]  F. Marchesano,et al.  F-term axion monodromy inflation , 2014, 1404.3040.

[117]  Richard Easther,et al.  The Knotted Sky I: Planck constraints on the primordial power spectrum , 2014, 1403.5849.

[118]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[119]  J. García-Bellido,et al.  Large-N running of the spectral index of inflation , 2014, 1402.2059.

[120]  R. Trotta,et al.  The best inflationary models after Planck , 2013, 1312.3529.

[121]  C. Ringeval Fast bayesian inference for slow-roll inflation , 2013, 1312.2347.

[122]  C. Martins,et al.  Evolution of semilocal string networks: Large-scale properties , 2013, 1312.2123.

[123]  S. Oguri,et al.  Mission Design of LiteBIRD , 2013, 1311.2847.

[124]  J. Torrado,et al.  Localized correlated features in the CMB power spectrum and primordial bispectrum from a transient reduction in the speed of sound , 2013, 1311.2552.

[125]  S. Ho,et al.  Constraining the initial conditions of the Universe using large scale structure , 2013, 1311.2606.

[126]  D. Roest Universality classes of inflation , 2013, 1309.1285.

[127]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[128]  Olivier Dor'e,et al.  Baryons do trace dark matter 380,000 years after the big bang: Search for compensated isocurvature perturbations with WMAP 9-year data , 2013, 1306.4319.

[129]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[130]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[131]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[132]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[133]  G. W. Pratt,et al.  Planck 2015 results - XVII. Constraints on primordial non-Gaussianity , 2014 .

[134]  G. W. Pratt,et al.  Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .

[135]  Adrian T. Lee,et al.  CONSTRAINTS ON COSMOLOGY FROM THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM OF THE 2500 deg2 SPT-SZ SURVEY , 2012, 1212.6267.

[136]  M. Zaldarriaga,et al.  New sources of gravitational waves during inflation , 2011, 1109.0542.

[137]  Bin Hu,et al.  Inflation with moderately sharp features in the speed of sound: Generalized slow roll and in-in formalism for power spectrum and bispectrum , 2014 .

[138]  David N. Spergel,et al.  The Primordial Inflation Explorer (PIXIE) , 2014, Astronomical Telescopes and Instrumentation.

[139]  Andrei Linde,et al.  Superconformal inflationary α-attractors , 2013, 1311.0472.

[140]  G. Smoot,et al.  Reconstruction of broad features in the primordial spectrum and inflaton potential from Planck , 2013, 1310.3038.

[141]  Andrew Jaffe,et al.  PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper , 2013, 1310.1554.

[142]  J. Ellis,et al.  Publisher’s Note: No-Scale Supergravity Realization of the Starobinsky Model of Inflation [Phys. Rev. Lett. 111 , 111301 (2013)] , 2013 .

[143]  S. Ferrara,et al.  On the supersymmetric completion of R + R2 gravity and cosmology , 2013, 1309.4052.

[144]  H. Kurki-Suonio,et al.  Constraints on neutrino density and velocity isocurvature modes from WMAP-9 data , 2013, 1307.4398.

[145]  A. Riotto,et al.  On the Starobinsky model of inflation from supergravity , 2013, 1307.1137.

[146]  W. Buchmuller,et al.  The Starobinsky model from superconformal D-term inflation , 2013, 1306.3471.

[147]  Andrei Linde,et al.  Superconformal generalizations of the Starobinsky model , 2013, 1306.3214.

[148]  J. Ellis,et al.  No-scale supergravity realization of the Starobinsky model of inflation. , 2013, Physical review letters.

[149]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[150]  N. Sugiyama,et al.  Optimal constraint on gNL from CMB , 2013, 1303.4626.

[151]  Jérôme Martin,et al.  Encyclopædia Inflationaris , 2024, Physics of the Dark Universe.

[152]  V. Mukhanov Quantum cosmological perturbations: predictions and observations , 2013, 1303.3925.

[153]  D. Lyth,et al.  The statistically anisotropic curvature perturbation generated by f(\phi)^2 F^2 , 2013, 1302.7304.

[154]  K. Benabed,et al.  Conservative constraints on early cosmology with MONTE PYTHON , 2013 .

[155]  V. Desjacques,et al.  Testing the running of non-Gaussianity through the CMB μ-distortion and the halo bias , 2013, 1301.2771.

[156]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[157]  M. Sheikh-Jabbari,et al.  Gauge fields and inflation , 2012, 1212.2921.

[158]  A. Tolley,et al.  Effective field theory and non-Gaussianity from general inflationary states , 2012, 1212.1172.

[159]  A. Ach'ucarro,et al.  Correlating features in the primordial spectra , 2012, 1211.5619.

[160]  Masahide Yamaguchi,et al.  Effective field theory approach to quasi-single field inflation and effects of heavy fields , 2012, 1211.1624.

[161]  P. A. R. Ade,et al.  SPIDER: Probing the Early Universe with a Suborbital Polarimeter , 2011, 1106.3087.

[162]  Junpu Wang,et al.  Solid Inflation , 2012, 1210.0569.

[163]  L. Sorbo,et al.  Erratum: Particle production during inflation and gravitational waves detectable by ground-based interferometers [Phys. Rev. D 85, 023534 (2012)PRVDAQ1550-7998] , 2012 .

[164]  G. Pisano,et al.  The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions , 2012, Other Conferences.

[165]  M. Bucher,et al.  Reconstructing the primordial power spectrum from the CMB , 2012, 1209.2147.

[166]  S. Masi,et al.  The Large-Scale Polarization Explorer (LSPE) , 2012, Other Conferences.

[167]  D. Huterer,et al.  First constraints on the running of non-Gaussianity. , 2012, Physical review letters.

[168]  D. Langlois,et al.  Influence of heavy modes on perturbations in multiple field inflation , 2012, 1205.5275.

[169]  B. Tent,et al.  Isocurvature modes in the CMB bispectrum , 2012, 1204.5042.

[170]  E. Komatsu,et al.  Scale-dependent bias of galaxies and μ-type distortion of the cosmic microwave background spectrum from single-field inflation with a modified initial state , 2012, 1204.4241.

[171]  J. Vázquez,et al.  Model selection applied to reconstruction of the Primordial Power Spectrum , 2012, 1203.1252.

[172]  M. Kleban,et al.  Spatial curvature falsifies eternal inflation , 2012, 1202.5037.

[173]  H. Kurki-Suonio,et al.  CONSTRAINTS ON SCALAR AND TENSOR PERTURBATIONS IN PHENOMENOLOGICAL AND TWO-FIELD INFLATION MODELS: BAYESIAN EVIDENCES FOR PRIMORDIAL ISOCURVATURE AND TENSOR MODES , 2012, 1202.2852.

[174]  P. Adshead,et al.  Natural inflation on a steep potential with classical non-Abelian gauge fields. , 2012, Physical review letters.

[175]  Jens Chluba,et al.  CMB at 2 × 2 order: the dissipation of primordial acoustic waves and the observable part of the associated energy release , 2012, 1202.0057.

[176]  M. Zaldarriaga,et al.  New window on primordial non-gaussianity. , 2012, Physical review letters.

[177]  Richard Easther,et al.  Bayesian Analysis of Inflation II: Model Selection and Constraints on Reheating , 2011, 1112.0326.

[178]  Daniel Baumann,et al.  Signature of supersymmetry from the early universe , 2011, 1109.0292.

[179]  L. Sorbo,et al.  Particle production during inflation and gravitational waves detectable by ground-based interferometers , 2011, 1109.0022.

[180]  R. Sunyaev,et al.  The evolution of CMB spectral distortions in the early Universe , 2011, 1109.6552.

[181]  M. Kunz,et al.  Cosmic string parameter constraints and model analysis using small scale Cosmic Microwave Background data , 2011, 1108.2730.

[182]  Olivier Dor'e,et al.  Compensated isocurvature perturbations and the cosmic microwave background , 2011, 1107.5047.

[183]  M. Hindmarsh Signals of Inflationary Models with Cosmic Strings , 2011, 1106.0391.

[184]  M. Lueker,et al.  A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE , 2011, 1105.3182.

[185]  M. Halpern,et al.  The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations , 2011, 1105.2044.

[186]  E. Copeland,et al.  Seeking string theory in the cosmos , 2011, 1105.0207.

[187]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[188]  B. Van Tent,et al.  Hunting for isocurvature modes in the cosmic microwave background non-Gaussianities , 2011, 1104.2567.

[189]  Jonathan Ganc Calculating the local-type fNL for slow-roll inflation with a non-vacuum initial state , 2011, 1104.0244.

[190]  S. Masi,et al.  COrE (Cosmic Origins Explorer) A White Paper , 2011, 1102.2181.

[191]  M. M. Sheikh-Jabbari,et al.  Gauge-flation: Inflation From Non-Abelian Gauge Fields , 2011, 1102.1513.

[192]  C. Hirata,et al.  HyRec: A fast and highly accurate primordial hydrogen and helium recombination code , 2010, 1011.3758.

[193]  Marco Peloso,et al.  Large non-gaussianity in axion inflation. , 2010, Physical review letters.

[194]  A. Starobinsky,et al.  Embedding (R+R^2)-Inflation into Supergravity , 2010, 1011.0240.

[195]  M. Kunz,et al.  Detecting and distinguishing topological defects in future data from the CMBPol satellite , 2010, 1010.5662.

[196]  L. Parker,et al.  Non-gaussianities and the Stimulated creation of quanta in the inflationary universe , 2010, 1010.5766.

[197]  Jinn-Ouk Gong,et al.  Features of heavy physics in the CMB power spectrum , 2010, 1010.3693.

[198]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.

[199]  D. Langlois,et al.  General treatment of isocurvature perturbations and non-Gaussianities , 2010, 1007.5498.

[200]  A. Loeb,et al.  Inflation and the scale dependent spectral index: prospects and strategies , 2010, 1007.3748.

[201]  R. Flauger,et al.  Resonant non-gaussianity , 2010, 1002.0833.

[202]  Julien Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation of non-cold relics , 2011 .

[203]  J. Chluba,et al.  Towards a complete treatment of the cosmological recombination problem , 2010, 1010.3631.

[204]  Oliver Zahn,et al.  Delensing CMB polarization with external datasets , 2010, 1010.0048.

[205]  J. Yokoyama,et al.  Inflation driven by the Galileon field. , 2010, Physical review letters.

[206]  Jérôme Martin,et al.  First CMB Constraints on the Inflationary Reheating Temperature , 2010, 1004.5525.

[207]  A. Moss,et al.  Tight constraints on F- and D-term hybrid inflation scenarios , 2010, 1001.0769.

[208]  E.P.S. Shellard,et al.  General CMB and primordial bispectrum estimation: Mode expansion, map making, and measures of F NL , 2009, 0912.5516.

[209]  Yi Wang,et al.  Quasi-Single Field Inflation and Non-Gaussianities , 2009, 0911.3380.

[210]  Raphael Flauger,et al.  Oscillations in the CMB from axion monodromy inflation , 2009, 0907.2916.

[211]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[212]  A. Starobinsky,et al.  Signatures of a Graviton Mass in the Cosmic Microwave Background , 2009, 0907.1658.

[213]  Liam McAllister,et al.  Gravity Waves and Linear Inflation from Axion Monodromy , 2008, 0808.0706.

[214]  J. Lesgourgues,et al.  Single-field inflation constraints from CMB and SDSS data , 2009, 0912.0522.

[215]  Carla Sofia Carvalho,et al.  Detecting bispectral acoustic oscillations from inflation using a new flexible estimator , 2009, 0911.1642.

[216]  S. Sarkar,et al.  Non-Gaussianity from violation of slow-roll in multiple inflation , 2009, 0910.3373.

[217]  Constraints on primordial isocurvature perturbations and spatial curvature by Bayesian model selection , 2009, 0909.5190.

[218]  K. Gorski,et al.  Study of the Experimental Probe of Inflationary Cosmology (EPIC)-Intemediate Mission for NASA's Einstein Inflation Probe , 2009, 0906.1188.

[219]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[220]  F. Wilczek,et al.  Running inflation in the Standard Model , 2008, 0812.4946.

[221]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[222]  L. Verde,et al.  Prospects for polarized foreground removal , 2008, 0811.3915.

[223]  Matias Zaldarriaga,et al.  CMBPol Mission Concept Study Probing Ination with CMB Polarization , 2008, 0811.3919.

[224]  A. Lazarian,et al.  CMBPol Mission Concept Study: Foreground Science Knowledge and Prospects , 2008, 0811.3920.

[225]  J. Dunkley,et al.  A Mission to Map our Origins , 2008, 0811.3911.

[226]  Asantha Cooray,et al.  CMBPol Mission Concept Study: Gravitational Lensing , 2008, 0811.3916.

[227]  K. Koyama,et al.  Signature of primordial non-Gaussianity on the matter power spectrum , 2008, 0808.4085.

[228]  T. Jeltema,et al.  Fitting the gamma-ray spectrum from dark matter with DMFIT: GLAST and the galactic center region , 2008, 0808.2641.

[229]  Paolo de Bernardis,et al.  B-Pol: detecting primordial gravitational waves generated during inflation , 2008, 0808.1881.

[230]  E. al.,et al.  The Experimental Probe of Inflationary Cosmology (EPIC): A Mission Concept Study for NASA's Einstein Inflation Probe , 2008, 0805.4207.

[231]  C. Gross,et al.  Constraints on modular inflation in supergravity and string theory , 2008, 0805.3290.

[232]  S. Weinberg Effective field theory for inflation , 2008, 0804.4291.

[233]  C. Gross,et al.  De Sitter vacua in no-scale supergravities and Calabi-Yau string models , 2008, 0804.1073.

[234]  Alexander Westphal,et al.  Monodromy in the CMB: Gravity Waves and String Inflation , 2008, 0803.3085.

[235]  M. Kunz,et al.  Degeneracy between primordial tensor modes and cosmic strings in future CMB data from the Planck satellite , 2008, 0803.2059.

[236]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[237]  J. Lesgourgues,et al.  How to constrain inflationary parameter space with minimal priors , 2008, 0802.0505.

[238]  Richard Easther,et al.  Generation and characterization of large non-Gaussianities in single field inflation , 2008, 0801.3295.

[239]  Antony Lewis,et al.  Likelihood Analysis of CMB Temperature and Polarization Power Spectra , 2008, 0801.0554.

[240]  L. Verde,et al.  Effects of scale-dependent non-Gaussianity on cosmological structures , 2007, 0711.4126.

[241]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[242]  A. Tolley,et al.  Enhanced non-Gaussianity from excited initial states , 2007, 0710.1302.

[243]  S. Kurennoy Gravitational Waves from Inflation , 2008 .

[244]  G. Bernstein,et al.  Detectability of CMB tensor B modes via delensing with weak lensing galaxy surveys , 2007, 0710.2538.

[245]  D. Parkinson,et al.  When can the Planck satellite measure spectral index running , 2007, astro-ph/0701481.

[246]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[247]  R. Easther,et al.  Large non-Gaussianities in single-field inflation , 2006, astro-ph/0611645.

[248]  L. McAllister,et al.  A Microscopic Limit on Gravitational Waves from D-brane Inflation , 2006, hep-th/0610285.

[249]  J. García-Bellido,et al.  Isocurvature bounds on axions revisited , 2006, hep-ph/0606107.

[250]  Gary Shiu,et al.  Observational signatures and non-Gaussianities of general single-field inflation , 2006, hep-th/0605045.

[251]  C. Vafa,et al.  Tensor modes from a primordial Hagedorn phase of string cosmology. , 2006, Physical review letters.

[252]  H. Kurki-Suonio,et al.  Hints of isocurvature perturbations in the cosmic microwave background? , 2006, astro-ph/0611917.

[253]  J. García-Bellido,et al.  Gauge-invariant inflaton in the minimal supersymmetric standard model. , 2006, Physical review letters.

[254]  J. García-Bellido,et al.  MSSM flat direction inflation: slow roll, stability, fine-tuning and reheating , 2006, hep-ph/0610134.

[255]  L. Senatore,et al.  Starting the Universe: Stable Violation of the Null Energy Condition and Non-standard Cosmologies , 2006, hep-th/0606090.

[256]  D. Wands,et al.  Curvature and isocurvature perturbations from two-field inflation in a slow-roll expansion , 2006, astro-ph/0605679.

[257]  Jérôme Martin,et al.  Inflation after Wmap3: Confronting the Slow-roll and Exact Power Spectra to Cmb Data , 2006 .

[258]  J. García-Bellido,et al.  Gauge invariant MSSM inflaton , 2006, hep-ph/0605035.

[259]  M. Kunz,et al.  Measuring the effective complexity of cosmological models , 2006, astro-ph/0602378.

[260]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[261]  D. Parkinson,et al.  A Nested Sampling Algorithm for Cosmological Model Selection , 2005, astro-ph/0508461.

[262]  A. Melchiorri,et al.  Cosmological Parameters from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507503.

[263]  J. García-Bellido,et al.  Squeezing the window on isocurvature modes with the Lyman-{alpha} forest , 2005, astro-ph/0509209.

[264]  S. Kachru,et al.  N-flation , 2005, hep-th/0507205.

[265]  L. Verde,et al.  Considerations in optimizing CMB polarization experiments to constrain inflationary physics , 2005, astro-ph/0506036.

[266]  D. Lyth,et al.  Hilltop inflation , 2005, hep-ph/0502047.

[267]  A. Slosar,et al.  Bayesian model selection and isocurvature perturbations , 2005, astro-ph/0501477.

[268]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[269]  A. Mazumdar,et al.  Non-Gaussianity from instant and tachyonic preheating , 2005, hep-ph/0501076.

[270]  H. Kurki-Suonio,et al.  Correlated primordial perturbations in light of CMB and large scale structure data , 2004, astro-ph/0412439.

[271]  J. García-Bellido,et al.  Bounds on cold dark matter and neutrino isocurvature perturbations from CMB and LSS data , 2004, astro-ph/0409326.

[272]  S. Weinberg Must cosmological perturbations remain nonadiabatic after multifield inflation , 2004, astro-ph/0405397.

[273]  A. Gruzinov Elastic Inflation , 2004, astro-ph/0404548.

[274]  E. Silverstein,et al.  DBI in the sky , 2004, hep-th/0404084.

[275]  U. Seljak,et al.  Gravitational lensing as a contaminant of the gravity wave signal in the CMB , 2003, astro-ph/0310163.

[276]  P. Steinhardt,et al.  Cosmic gravitational-wave background in a cyclic universe , 2003, hep-th/0307170.

[277]  J. García-Bellido,et al.  Bounds on isocurvature perturbations from CMB and LSS , 2003, astro-ph/0406488.

[278]  Yong-Seon Song,et al.  Determining neutrino mass from the cosmic microwave background alone. , 2003, Physical review letters.

[279]  J. García-Bellido,et al.  Bounds on isocurvature perturbations from cosmic microwave background and large scale structure data. , 2003, Physical review letters.

[280]  Wayne Hu,et al.  Cosmic microwave background lensing reconstruction on the full sky , 2003 .

[281]  C. Contaldi,et al.  Suppressing the lower multipoles in the CMB anisotropies , 2003, astro-ph/0303636.

[282]  T. Banks,et al.  de Sitter vacua, renormalization, and locality , 2003 .

[283]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[284]  A. Lewis,et al.  Observational constraints on the curvaton model of inflation , 2002, astro-ph/0212248.

[285]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[286]  L. Susskind,et al.  Initial Conditions for Inflation , 2002, hep-th/0209231.

[287]  T. Moroi,et al.  Erratum to: “Effects of cosmological moduli fields on cosmic microwave background”: [Phys. Lett. B 522 (2001) 215] , 2002 .

[288]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[289]  Padova,et al.  Observational test of two-field inflation , 2002, astro-ph/0205253.

[290]  M. Kamionkowski,et al.  Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization. , 2002, Physical review letters.

[291]  L. Knox,et al.  Limit on the detectability of the energy scale of inflation. , 2002, Physical review letters.

[292]  K. Enqvist,et al.  Adiabatic CMB perturbations in pre - big bang string cosmology , 2001, hep-ph/0109214.

[293]  Formation of topological defects in gauge field theories , 2002, hep-ph/0108159.

[294]  L. Amendola,et al.  Correlated perturbations from inflation and the cosmic microwave background. , 2001, Physical review letters.

[295]  M. Kunz,et al.  Cosmic structure formation with topological defects , 2001, astro-ph/0110348.

[296]  T. Moroi,et al.  Effects of cosmological moduli fields on cosmic microwave background , 2001, hep-ph/0110096.

[297]  D. Lyth,et al.  Generating the curvature perturbation without an inflaton , 2001, hep-ph/0110002.

[298]  S. Matarrese,et al.  Adiabatic and isocurvature perturbations from inflation: Power spectra and consistency relations , 2001, astro-ph/0107502.

[299]  N. Turok,et al.  Constraining isocurvature perturbations with cosmic microwave background polarization. , 2000, Physical review letters.

[300]  David N. Spergel,et al.  Acoustic signatures in the primary microwave background bispectrum , 2000, astro-ph/0005036.

[301]  José M Bernardo and Adrian F M Smith,et al.  BAYESIAN THEORY , 2008 .

[302]  B. Bassett,et al.  Adiabatic and entropy perturbations from inflation , 2000, astro-ph/0009131.

[303]  V. V. Hristov,et al.  MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.

[304]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[305]  A. Riazuelo,et al.  Correlated mixtures of adiabatic and isocurvature cosmological perturbations , 1999, astro-ph/9912497.

[306]  D. Eisenstein,et al.  Foregrounds and Forecasts for the Cosmic Microwave Background , 1999, astro-ph/9905257.

[307]  N. Turok,et al.  General primordial cosmic perturbation , 1999, astro-ph/9904231.

[308]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[309]  D. Langlois Correlated adiabatic and isocurvature perturbations from double inflation , 1999, astro-ph/9906080.

[310]  V. Mukhanov,et al.  Perturbations in k-inflation , 1999, hep-th/9904176.

[311]  L. Pogosian,et al.  Cosmic microwave background anisotropy from wiggly strings , 1999, astro-ph/9903361.

[312]  U. Seljak,et al.  Power spectra in global defect theories of cosmic structure formation , 1997, astro-ph/9704165.

[313]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[314]  D. Lyth What Would We Learn by Detecting a Gravitational Wave Signal in the Cosmic Microwave Background Anisotropy , 1996, hep-ph/9606387.

[315]  E. L. Wright,et al.  The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.

[316]  Turner,et al.  CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.

[317]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[318]  J. Silk,et al.  Power spectrum constraints from spectral distortions in the cosmic microwave background , 1994, astro-ph/9402045.

[319]  Copeland,et al.  False vacuum inflation with Einstein gravity. , 1994, Physical review. D, Particles and fields.

[320]  Andrei Linde,et al.  Hybrid inflation. , 1993, Physical review. D, Particles and fields.

[321]  Hu,et al.  Thermalization and spectral distortions of the cosmic background radiation. , 1993, Physical review. D, Particles and fields.

[322]  G. Veneziano,et al.  Pre-big-bang in string cosmology , 1992, hep-th/9211021.

[323]  Adams,et al.  Natural inflation: Particle physics models, power-law spectra for large-scale structure, and constraints from the Cosmic Background Explorer. , 1992, Physical review. D, Particles and fields.

[324]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[325]  G. De Zotti,et al.  Formation and evolution of early distortions of the microwave background spectrum : a numerical study , 1991 .

[326]  Ruth A. Daly,et al.  Spectral distortions of the microwave background radiation resulting from the damping of pressure waves , 1991 .

[327]  J. Frieman,et al.  Natural inflation with pseudo Nambu-Goldstone bosons. , 1990, Physical review letters.

[328]  S. Mollerach,et al.  Isocurvature baryon perturbations and inflation. , 1990, Physical review. D, Particles and fields.

[329]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[330]  B. M. Hill,et al.  Theory of Probability , 1990 .

[331]  A. A. Starobinskii The perturbation spectrum evolving from a nonsingular, initially de Sitter cosmology, and the microwave background anisotropy , 1983 .

[332]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[333]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[334]  Katsuhiko Sato,et al.  First-order phase transition of a vacuum and the expansion of the Universe , 1981 .

[335]  Viatcheslav Mukhanov,et al.  Quantum Fluctuations and a Nonsingular Universe , 1981 .

[336]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[337]  D. Kazanas Dynamics of the universe and spontaneous symmetry breaking , 1980 .

[338]  S. Coleman,et al.  Gravitational Effects on and of Vacuum Decay , 1980 .

[339]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[340]  F. Englert,et al.  The Creation of the Universe as a Quantum Phenomenon , 1978 .

[341]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[342]  Y. Zeldovich,et al.  The interaction of matter and radiation in the hot model of the Universe, II , 1970, Astrophysics and Space Science.

[343]  Y. Zeldovich,et al.  Small scale entropy and adiabatic density perturbations — Antimatter in the Universe , 1970 .

[344]  Y. Zeldovich,et al.  The interaction of matter and radiation in a hot-model universe , 1969 .

[345]  L. M. M.-T. Theory of Probability , 1929, Nature.

[346]  N. Turok,et al.  Constraining Isocurvature Perturbations with CMB Polarisation , 1910 .