Monte Carlo simulation of terahertz quantum cascade laser structures based on wide-bandgap semiconductors

Wide-bandgap semiconductors such as GaN∕AlGaN and ZnO∕MgZnO quantum wells are promising for improving the spectral reach and high-temperature performance of terahertz quantum cascade lasers, due to their characteristically large optical phonon energies. Here, a particle-based Monte Carlo model is developed and used to quantify the potential of terahertz sources based on these materials relative to existing devices based on GaAs∕AlGaAs quantum wells. Specifically, three otherwise identical quantum cascade structures based on GaN∕AlGaN, ZnO∕MgZnO, and GaAs∕AlGaAs quantum wells are designed, and their steady-state carrier distributions are then computed as a function of temperature. The simulation results show that the larger the optical phonon energies (as in going from the AlGaAs to the MgZnO to the AlGaN materials system), the weaker the temperature dependence of the population inversion. In particular, as the temperature is increased from 10to300K, the population inversions are found to decrease by facto...

[1]  Moko,et al.  Ensemble Monte Carlo simulation of electron-electron scattering: Improvements of conventional methods. , 1991, Physical review. B, Condensed matter.

[2]  Akira Ohtomo,et al.  MgxZn1−xO as a II–VI widegap semiconductor alloy , 1998 .

[3]  A. Azad,et al.  Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies , 2006 .

[4]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[5]  New developments for nitride unipolar devices at 1.3–1.5 μm wavelengths , 2006 .

[6]  Anirban Bhattacharyya,et al.  Optically pumped intersubband emission of short-wave infrared radiation with GaN/AlN quantum wells , 2009 .

[7]  P. Lugli,et al.  The Monte Carlo Method for Semiconductor Device Simulation , 1990 .

[8]  O. Bonno,et al.  Modeling of electron–electron scattering in Monte Carlo simulation of quantum cascade lasers , 2005 .

[9]  Mosko,et al.  Carrier-carrier scattering in photoexcited intrinsic GaAs quantum wells and its effect on femtosecond plasma thermalization. , 1995, Physical review. B, Condensed matter.

[10]  J. Piprek Nitride semiconductor devices : principles and simulation , 2007 .

[11]  Lester F. Eastman,et al.  Hot-phonon effect on power dissipation in a biasedAlxGa1−xN∕AlN∕GaNchannel , 2005 .

[12]  B. Williams,et al.  Terahertz quantum cascade lasers with double-resonant-phonon depopulation , 2006 .

[13]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[14]  B. Ridley,et al.  Theoretical model for polarization superlattices: Energy levels and intersubband transitions , 2003 .

[15]  Mark Lee,et al.  Searching for a Solid-State Terahertz Technology , 2007, Science.

[16]  W. Fan,et al.  Theoretical investigation of excitonic gain in ZnO--Mg/sub x/Zn/sub 1-x/O strained quantum wells , 2006, IEEE Journal of Quantum Electronics.

[17]  Lester F. Eastman,et al.  GaN/AlN-based quantum-well infrared photodetector for 1.55 μm , 2003 .

[18]  Qing Hu,et al.  Analysis of transport properties of tetrahertz quantum cascade lasers , 2003 .

[19]  S. Goodnick,et al.  Effect of electron-electron scattering on nonequilibrium transport in quantum-well systems. , 1988, Physical review. B, Condensed matter.

[20]  K. Bajaj,et al.  Excitonic transitions in ZnO/MgZnO quantum well heterostructures , 2001 .

[21]  P. Harrison,et al.  Quantum wells, wires, and dots , 2000 .

[22]  D. Jena,et al.  Optical study of hot electron transport in GaN: Signatures of the hot-phonon effect , 2006 .

[23]  Jacob B. Khurgin,et al.  Hot phonon effect on electron velocity saturation in GaN: A second look , 2007 .

[24]  D. Grischkowsky,et al.  Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN , 2003 .

[25]  Yan Li,et al.  Ultrafast all-optical switching with low saturation energy via intersubband transitions in GaN/AlN quantum-well waveguides. , 2007, Optics express.

[26]  Richard A. Soref,et al.  Active region design of a terahertz GaN/ Al0.15Ga0.85N quantum cascade laser , 2005 .

[27]  M. Moško,et al.  Phase-shift analysis of two-dimensional carrier-carrier scattering in GaAs and GaN: Comparison with Born and classical approximations , 2000 .

[28]  Enrico Bellotti,et al.  Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures , 2008 .

[29]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[30]  Giles Davies,et al.  Far-infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K , 2003 .

[31]  Maria Tchernycheva,et al.  Short wavelength (λ=2.13μm) intersubband luminescence from GaN∕AlN quantum wells at room temperature , 2007 .

[32]  Seoung-Hwan Park,et al.  Spontaneous and piezoelectric polarization effects in wurtzite ZnO∕MgZnO quantum well lasers , 2005 .

[33]  Jérôme Faist,et al.  Quantum cascade lasers operating from 1.2to1.6THz , 2007 .

[34]  J. Lü,et al.  Monte Carlo simulation of hot phonon effects in resonant-phonon-assisted terahertz quantum-cascade lasers , 2006 .

[35]  Hideo Ohno,et al.  Intersubband transitions in ZnO multiple quantum wells , 2008 .

[36]  Qing Hu,et al.  Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. , 2005, Optics express.

[37]  Z. R. Wasilewski,et al.  Terahertz quantum-cascade lasers based on a three-well active module , 2007 .

[38]  Anirban Bhattacharyya,et al.  Intersubband absorption in AlN∕GaN∕AlGaN coupled quantum wells , 2007 .

[39]  N. Suzuki,et al.  All-optical switch utilizing intersubband transition in GaN quantum wells , 2006, IEEE Journal of Quantum Electronics.

[40]  Claire F. Gmachl,et al.  Intersubband absorption in GaN/AlGaN multiple quantum wells in the wavelength range of λ∼1.75–4.2 μm , 2000 .

[41]  Xiaodong Mu,et al.  Stokes and anti-Stokes resonant Raman scatterings from biased GaN/AlN heterostructure , 2008 .

[42]  Paul Harrison,et al.  Simulation and design of GaN/AlGaN far-infrared (λ∼34 μm) quantum-cascade laser , 2004 .

[43]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[44]  R. Dimitrov,et al.  Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures , 2000 .

[45]  Roberto Paiella,et al.  Intersubband Transitions In Quantum Structures , 2006 .