Using Choquet integral in economics

This paper is devoted to application of the Choquet integral with respect to the monotone set functions in economics. We present the application in decision making, finance, insurance, social welfare and quality of life. The Choquet integral is used as the numerical representation of preference relation in decision making, as the “expected value” of future price in financial decision problems, as the insurance premium and as the social evaluation function.

[1]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[2]  S. Werlang,et al.  Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio , 1992 .

[3]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[4]  E. Karni Optimal Insurance: A Nonexpected Utility Analysis , 1992 .

[5]  Peter C. Fishburn,et al.  Evaluative comparisons of distributions of a social variable: Basic issues and criteria , 1976 .

[6]  Shaun S. Wang,et al.  Insurance pricing and increased limits ratemaking by proportional hazards transforms , 1995 .

[7]  G. Choquet Theory of capacities , 1954 .

[8]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[9]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[10]  Dieter Denneberg,et al.  Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation , 1990, ASTIN Bulletin.

[11]  D. Newbery A theorem on the measurement of inequality , 1970 .

[12]  John A. Weymark,et al.  GENERALIZED GIN 1 INEQUALITY INDICES , 2001 .

[13]  R. Yager Connectives and quantifiers in fuzzy sets , 1991 .

[14]  Hans U. Gerber,et al.  An introduction to mathematical risk theory , 1982 .

[15]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[16]  L. Eeckhoudt,et al.  Optimal insurance without expected utility: The dual theory and the linearity of insurance contracts , 1995 .

[17]  Shaun S. Wang Premium Calculation by Transforming the Layer Premium Density , 1996, ASTIN Bulletin.

[18]  Marco Scarsini,et al.  A note on stochastic dominance and inequality measures , 1989 .

[19]  K. Arrow Essays in the theory of risk-bearing , 1958 .

[20]  P. Wakker Separating marginal utility and probabilistic risk aversion , 1994 .

[21]  Marc Goovaerts,et al.  Ordering of actuarial risks , 1994 .

[22]  I. Gilboa,et al.  Linear Measures, the Gini Index, and The Income-Equality Trade-off , 1994 .

[23]  I. Meilijson,et al.  New Tools to Better Model Behavior Under Risk and UNcertainty: An Oevrview , 1997 .

[24]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[25]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[26]  J. Neumann,et al.  Theory of Games and Economic Behavior. , 1945 .

[27]  H. Gerber,et al.  On convex principles of premium calculation , 1985 .

[28]  Sujoy Mukerji Ambiguity aversion and incompleteness of contractual form , 1998 .

[29]  M. Jeleva Background Risk, Demand for Insurance, and Choquet Expected Utility Preferences , 2000 .

[30]  L. J. Savage,et al.  The Foundation of Statistics , 1956 .

[31]  Peter C. Fishburn,et al.  Evaluative comparisons of distributions of a social variable: Ordering methods , 1979 .

[32]  Stanisław Heilpern,et al.  The expected value of a fuzzy number , 1992 .

[33]  Virginia R. Young,et al.  Ordering risks: Expected utility theory versus Yaari's dual theory of risk , 1998 .

[34]  Shaun S. Wang,et al.  Axiomatic characterization of insurance prices , 1997 .

[35]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[36]  John A. Weymark,et al.  A single-parameter generalization of the Gini indices of inequality , 1980 .

[37]  Virginia R. Young,et al.  Optimal insurance under Wang’s premium principle , 1999 .

[38]  G. Bortolan,et al.  A review of some methods for ranking fuzzy subsets , 1985 .