Scalable representation for 3D object recognition using feature sharing and view clustering

Scalability is an important issue in object recognition as it reduces database storage and recognition time. In this paper, we propose a new scalable 3D object representation and a learning method to recognize many everyday objects. The key proposal for scalable object representation is to combine the concept of feature sharing with multi-view clustering in part-based object representation, in particular a common-frame constellation model (CFCM). In this representation scheme, we also propose a fully automatic learning method: appearance-based automatic feature clustering and sequential construction of clustered CFCMs from labeled multi-views and multiple objects. We evaluated the scalability of the proposed method to COIL-100 DB and applied the learning scheme to 112 objects with 620 training views. Experimental results show the scalable learning results in almost constant recognition performance relative to the number of objects.

[1]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  In-So Kweon,et al.  Biologically Motivated Perceptual Feature: Generalized Robust Invariant Feature , 2006, ACCV.

[3]  Alexander Zelinsky,et al.  Fast Radial Symmetry for Detecting Points of Interest , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Yehezkel Yeshurun,et al.  Context-free attentional operators: The generalized symmetry transform , 1995, International Journal of Computer Vision.

[5]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[6]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[7]  James L. Crowley,et al.  Local Scale Selection for Gaussian Based Description Techniques , 2000, ECCV.

[8]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[9]  Jochen Triesch,et al.  Shared Features for Scalable Appearance-Based Object Recognition , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[10]  Donald D. Hoffman Visual Intelligence: How We Create What We See , 1998 .

[11]  Shree K. Nayar,et al.  Real-Time Focus Range Sensor , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[13]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[14]  Hamid Soltanian-Zadeh,et al.  Radon transform orientation estimation for rotation invariant texture analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Antonio Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, CVPR 2004.

[16]  Pietro Perona,et al.  Recognition by Probabilistic Hypothesis Construction , 2004, ECCV.

[17]  David G. Stork,et al.  Pattern Classification , 1973 .

[18]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[19]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[20]  Hiroshi Murase,et al.  Real-time 100 object recognition system , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[21]  Eric R. Kandel,et al.  Perception of motion, depth and form , 2000 .

[22]  Nuno Vasconcelos,et al.  Scalable discriminant feature selection for image retrieval and recognition , 2004, CVPR 2004.

[23]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[24]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[25]  David G. Lowe,et al.  Local feature view clustering for 3D object recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[26]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[28]  Bernt Schiele,et al.  Local features for object class recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[29]  Cordelia Schmid,et al.  A structured probabilistic model for recognition , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[30]  Alexander Zelinsky,et al.  A Fast Radial Symmetry Transform for Detecting Points of Interest , 2002, ECCV.

[31]  Longin Jan Latecki,et al.  Convexity Rule for Shape Decomposition Based on Discrete Contour Evolution , 1999, Comput. Vis. Image Underst..

[32]  Stepán Obdrzálek,et al.  Sub-linear Indexing for Large Scale Object Recognition , 2005, BMVC.

[33]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Piet W. Verbeek,et al.  Estimators for Orientation and Anisotropy in Digitized Images , 1995 .

[35]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[36]  Maximilian Riesenhuber,et al.  Investigating shape representation in area V4 with HMAX: Orientation and Grating selectivities , 2003 .