Formulation and application of a quasi-static material point method

This thesis is concerned with the analysis of quasi-static large deformation problems such as the jacking of piles where inertia and damping effects can be neglected, as opposed to dynamic problems such as pile driving. To this end, a novel type of Material Point Method (MPM) that is specifically adapted to the analysis of quasi-static large deformation problems is developed. The quasi-static MPM can be considered as an extension of the classical Updated Lagrangian Finite Element Method (UL-FEM). As with the UL-FEM, a solid body is discretised by finite elements, but in addition, the solid body is discretised by a cloud of material points which moves through the mesh in the course of a computation. The movement of material points represents the arbitrary large deformations of the solid body. The FE grid is used as with the UL-FEM to compute incremental displacements and strain increments at the locations of material points. In contrast to the UL-FEM, the mesh can be reset into its original state or changed arbitrarily if accumulated distortions of the FE grid cause numerical inaccuracies. Material and state parameters of the solid body as well as applied loads are stored in material points. In contrast to most existing implementations of the MPM, the developed quasi-static variant makes use of implicit rather than explicit time integration, which allows for a considerable reduction of the computation time in case of quasi-static problems. The development of the quasi-static MPM and its validation for simple benchmark problems is the first aim of this thesis. This includes the modelling of soil-structure interaction within the developed method, a feature that is essential to many geotechnical analyses. Here, the novel approach of extending interface elements commonly used in small-strain Finite Element analyses for use with the Material Point Method has been taken. The application of the quasi-static MPM to the simulation of cone penetration testing (CPT) forms the second aim. This widely-used in-situ test consists of pushing a steel rod with a measuring device attached to its tip into the ground with constant velocity. Numerical analyses of cone penetration testing improve the understanding of involved mechanical processes and allow to refine existing or establish new correlations between CPT measurements and soil properties. In the frame of this thesis, cone penetration testing in undrained soft clay is considered with the aim of investigating the relation between the tip resistance and the undrained shear strength of clay. Here, a new soil model that takes into consideration the anisotropic strength of clay has been applied. Thereby, the undrained shear strength of clay and thus measurements of tip resistance are reproduced with a significantly higher accuracy than with previously performed numerical analyses reported so far in literature. Diese Dissertation befast sich mit der numerischen Analyse groser Verformungsprozesse. Es werden ausschlieslich quasi-statische Problemstellungen betrachtet, Problemstellungen bei denen Tragheits- und Dampfungseffekte vernachlasigt werden konnen, wie etwa bei dem Eindrucken eines Pfahls. Zu diesem Zweck wurde eine speziell fur die Analyse quasi-statischer geotechnischer Problemstellungen geeignete Variante der Material-Punkt-Methode entwickelt. Die Material-Punkt-Methode (MPM) kann als Erweiterung der klassischen Updated-Lagrangian Finite-Elemente-Methode (UL-FEM) betrachtet werden. Sie verwendet wie die UL-FEM ein FE-Netz zur Diskretisierung eines Festkorpers. Zusatzlich wird bei der MPM der Festkorper durch eine Punktmenge abgebildet, die sich im Verlauf einer Berechnung durch das FE-Netz bewegt. Die Verschiebungen der Punkte, Materialpunkte genannt, bilden die beliebig grosen Verformungen des Festkorpers ab. Das FE-Netz wird wie bei der UL-FEM zur Berechnung inkrementeller Verschiebungen und Dehnungen an den Positionen der Materialpunkte verwendet. Im Unterschied zur UL-FEM kann das Netz in seinen ursprunglichen unverformten Zustand zuruckgesetzt oder neu generiert werden, sobald die akkumulierten Verzerrungen des FE-Netzes zu numerischen Ungenauigkeiten fuhren: Samtliche Materialeigenschaften und Zustandsgrosen des Festkorpers wie auch Lasten werden in den Materialpunkten gespeichert. Im Gegensatz zu den meisten existierenden Implementierungen der MPM verwendet die vorgestellte quasi-statische Variante ein implizites anstatt eines expliziten Zeitintegrationsschemas. Dies ermoglicht eine deutliche Verringerung des Rechenaufwandes im Falle quasi-statischer Problemstellungen. Die Entwicklung der quasi-statischen MPM und deren Validierung anhand einfacher Benchmark-Probleme bilden den ersten Teil dieser Forschungsarbeit. Dies beinhaltet die Modellierung von Boden-Bauwerk-Interaktion, ein wesentlicher Bestandteil vieler geotechnischer Analysen. Hierbei wurden zu diesem Zweck in Finite-Elemente-Berechnungen haufig eingesetzte Interface-Elemente fur den Einsatz mit der MPM erweitert. Die Anwendung der entwickelten Methode zur Simulation von Drucksondierungen bilden den zweiten Teil dieser Forschungsarbeit. Dieses weitverbreitete Sondierverfahren besteht darin, einen Stahlstab mit konstanter Geschwindigkeit in den Untergrund zu drucken. An dem Stabende angebrachte Kraftaufnehmer messen den Druck auf die konische Stabspitze sowie auf eine oberhalb der Spitze angebrachte Manschette. Die Simulation von Drucksondierungen ermoglicht es, bestehende Korrelationen zwischen Meswerten und Bodeneigenschaften zu verbessern und neue Korrelationen zu erstellen. Im Rahmen dieser Forschungsarbeit wurden Drucksondierungen in wassergesattigtem undrainierten Ton untersucht. Das Ziel ist, die Beziehung zwischen Spitzendruck und der undrainierten Scherfestigkeit von Ton zu untersuchen. Hierbei wurde im Unterschied zu bisherigen Studien ein Bodenmodell eingesetzt, das die Anisotropie der Festigkeitseigenschaften von Tonboden berucksichtigt.

[1]  A. W. Bishop,et al.  THE INFLUENCE OF AN UNDRAINED CHANGE IN STRESS ON THE PORE PRESSURE IN POROUS MEDIA OF LOW COMPRESSIBILITY , 1973 .

[2]  Huang Mao-song An anisotropic elastoplastic model for soft clays , 2007 .

[3]  Minna Karstunen,et al.  Anisotropic creep model for soft soils , 2008 .

[4]  Sung-Kie Youn,et al.  A particle‐in‐cell solution to the silo discharging problem , 1999 .

[5]  Ted Belytschko,et al.  An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials , 1986 .

[6]  P. van den Berg,et al.  Analysis of Soil Penetration , 1994 .

[7]  Renato Lancellotta,et al.  NEW DEVELOPMENTS IN FIELD AND LABORATORY TESTING OF SOILS. PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING, SAN FRANCISCO, 12-16 AUGUST 1985 , 1985 .

[8]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[9]  Fred J. Vermolen,et al.  Numerical Methods in Scientific Computing , 2006 .

[10]  D. J. Henkel The Shear Strength of Saturated Remolded Clays , 1960 .

[11]  Peter K. Robertson,et al.  Cone-penetration testing in geotechnical practice , 1997 .

[12]  G. R. Liu,et al.  1013 Mesh Free Methods : Moving beyond the Finite Element Method , 2003 .

[13]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[14]  E. A. de Souza Neto,et al.  Computational methods for plasticity , 2008 .

[15]  Z. Więckowski The material point method in large strain engineering problems , 2004 .

[16]  C. J. Coetzee,et al.  The modelling of granular flow using the particle-in-cell method , 2004 .

[17]  Pieter A. Vermeer,et al.  Solution of quasi‐static large‐strain problems by the material point method , 2010 .

[18]  K. Terzaghi,et al.  Soil mechanics in engineering practice , 1948 .

[19]  Pieter A. Vermeer,et al.  The modelling of anchors using the material point method , 2005 .

[20]  J. Huetink On the simulation of thermo-mechanical forming processes , 1986 .

[21]  Rodney Hill,et al.  Some basic principles in the mechanics of solids without a natural time , 1959 .

[22]  J. Brackbill,et al.  The material-point method for granular materials , 2000 .

[23]  W. T. Koiter General theorems for elastic plastic solids , 1960 .

[24]  D. Sulsky,et al.  THE MATERIAL POINT METHOD FOR SIMULATION OF THIN MEMBRANES , 1999 .

[25]  J. Rice,et al.  Finite-element formulations for problems of large elastic-plastic deformation , 1975 .

[26]  Z. Więckowski,et al.  Modelling of silo discharge and filling problems by the material point method , 2003 .

[27]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[28]  H. V. Langen,et al.  Numerical analysis of soil-structure interaction , 1991 .

[29]  D. Sulsky,et al.  Using the material‐point method to model sea ice dynamics , 2007 .

[30]  Deborah Sulsky,et al.  Mass matrix formulation of the FLIP particle-in-cell method , 1992 .

[31]  Pieter A. Vermeer,et al.  Soil collapse computations with finite elements , 1989 .

[32]  P. Silvester,et al.  Symmetric Quadrature Formulae for Simplexes , 1970 .

[33]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[34]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[35]  James E. Guilkey,et al.  Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the finite element method , 2003 .

[36]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[37]  Pieter A. Vermeer,et al.  Automatic step size correction for non-associated plasticity problems , 1990 .

[38]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[39]  Pieter A. Vermeer,et al.  Simulation of Incompressible Problems in Geomechanics , 2010 .

[40]  Howard L. Schreyer,et al.  Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems , 1996 .

[41]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[42]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[43]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[44]  M. Randolph,et al.  A practical numerical approach for large deformation problems in soil , 1998 .

[45]  James E. Guilkey,et al.  An Improved Contact Algorithm for the Material Point Method and Application to Stress Propagation in Granular Material , 2001 .

[46]  R. A. Tokar,et al.  Problems of soil mechanics and construction on soft clays and structurally unstable soils , 1973 .

[47]  Hans-Jürgen Lang,et al.  Bodenmechanik und Grundbau , 1982 .

[48]  Mark Randolph,et al.  Analysis of Factors Influencing Soil Classification Using Normalized Piezocone Tip Resistance and Pore Pressure Parameters , 2008 .

[49]  M F Randolph,et al.  A numerical study of cone penetration in clay , 2004 .