Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity

The Morley finite element method (FEM) is attractive for semilinear problems with the biharmonic operator as a leading term in the stream function vorticity formulation of 2D Navier-Stokes problem and in the von K\'{a}rm\'{a}n equations. This paper establishes a best-approximation a~priori error analysis and an a~posteriori error analysis of discrete solutions close to an arbitrary regular solution on the continuous level to semilinear problems with a trilinear nonlinearity. The analysis avoids any smallness assumptions on the data and so has to provide discrete stability by a perturbation analysis before the Newton-Kantorovic theorem can provide the existence of discrete solutions. An abstract framework for the stability analysis in terms of discrete operators from the medius analysis leads to new results on the nonconforming Crouzeix-Raviart FEM for second-order linear non-selfadjoint and indefinite elliptic problems with $L^\infty$ coefficients. The paper identifies six parameters and sufficient conditions for the local a~priori and a~posteriori error control of conforming and nonconforming discretisations of a class of semilinear elliptic problems first in an abstract framework and then in the two semilinear applications. This leads to new best-approximation error estimates and to a~posteriori error estimates in terms of explicit residual-based error control for the conforming and Morley FEM.

[1]  Dietmar Gallistl,et al.  Adaptive finite element computation of eigenvalues , 2014 .

[2]  Carsten Carstensen,et al.  Comparison Results of Finite Element Methods for the Poisson Model Problem , 2012, SIAM J. Numer. Anal..

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  Carsten Carstensen,et al.  Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems , 2014, Numerische Mathematik.

[5]  Daniel B. Szyld,et al.  The many proofs of an identity on the norm of oblique projections , 2006, Numerical Algorithms.

[6]  Dietmar Gallistl,et al.  Morley Finite Element Method for the Eigenvalues of the Biharmonic Operator , 2014, 1406.2876.

[7]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[8]  Susanne C. Brenner,et al.  A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates , 2013, J. Comput. Appl. Math..

[9]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[10]  C. Carstensen Clément Interpolation and Its Role in Adaptive Finite Element Error Control , 2006 .

[11]  S. Singh Nonlinear functional analysis and its applications , 1986 .

[12]  Junping Wang,et al.  Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions , 1996, Math. Comput..

[13]  Alexandre Ern,et al.  A discontinuous skeletal method for the viscosity-dependent Stokes problem , 2015 .

[14]  Carsten Carstensen,et al.  Comparison results of nonstandard $P_2$ finite element methods for the biharmonic problem , 2015 .

[15]  Ricardo H. Nochetto,et al.  Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..

[16]  Susanne C. Brenner Preconditioning Complicated Finite Elements by Simple Finite Elements , 1996, SIAM J. Sci. Comput..

[17]  Larry L. Schumaker,et al.  Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory , 2007 .

[18]  Ohannes A. Karakashian,et al.  Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems , 2007, SIAM J. Numer. Anal..

[19]  Neela Nataraj,et al.  A Nonconforming Finite Element Approximation for the von Karman Equations , 2015, 1506.08958.

[20]  Neela Nataraj,et al.  Conforming finite element methods for the von Kármán equations , 2016, Adv. Comput. Math..

[21]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[22]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[23]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[24]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[25]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[26]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[27]  Ping-Fan Dai,et al.  A note on diagonal dominance, Schur complements and some classes of H-matrices and P-matrices , 2016, Adv. Comput. Math..

[28]  Alexandre Ern,et al.  A Discontinuous-Skeletal Method for Advection-Diffusion-Reaction on General Meshes , 2015, SIAM J. Numer. Anal..

[29]  Paul Houston,et al.  An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems , 2011 .

[30]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[31]  R. Nicolaides,et al.  Finite element technique for optimal pressure recovery from stream function formulation of viscous flows , 1986 .

[32]  Carsten Carstensen,et al.  Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.

[33]  R. A. Nicolaides,et al.  Analysis of nonconforming stream function and pressure finite element spaces for the Navier-Stokes equations , 1989 .

[34]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[35]  Jun Hu,et al.  A new a posteriori error estimate for the Morley element , 2009, Numerische Mathematik.

[36]  Susanne C. Brenner,et al.  A C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document} interior penalty method for a von Kármán plate , 2016, Numerische Mathematik.

[37]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[38]  Jun Hu,et al.  A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles , 2012, Numerische Mathematik.

[39]  F. Brezzi,et al.  Finite element approximations of the von Kármán equations , 1978 .

[40]  Susanne C. Brenner,et al.  Finite element methods for the displacement obstacle problem of clamped plates , 2012, Math. Comput..

[41]  Jun Hu,et al.  A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes , 2014, Comput. Math. Appl..

[42]  Michael Neilan,et al.  A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation , 2010, Numerische Mathematik.

[43]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[44]  Carsten Carstensen,et al.  Comparison results for the Stokes equations , 2014 .

[45]  Carsten Carstensen,et al.  Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems , 2014, Math. Comput..