Numerical simulations of laser wakefield accelerators in optimal Lorentz frames

The simulation of laser wakefield accelerators with particle-in-cell codes in relativistic reference frames is described, with emphasis on the computational speed-ups, which may potentially exceed three orders of magnitude in comparison with laboratory frame configurations. The initialization of laboratory quantities in a relativistically moving frame is depicted, and the method for result comparison with the plasma rest frame is described. Benchmarks with laboratory frame simulations and experimental data where gains of ∼20 times were obtained are discussed, and potential numerical issues are analyzed. This method enables numerical simulations with shorter turnaround times required for parameter scanning, and for one-to-one three-dimensional experimental modeling of current and next generation laser wakefield experiments.

[1]  Thomas M. Antonsen,et al.  Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas , 1997 .

[2]  Warren B. Mori,et al.  Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25TW lasersa) , 2006 .

[3]  E. Lindman “Free-space” boundary conditions for the time dependent wave equation , 1975 .

[4]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[5]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[6]  Joana Luis Martins,et al.  Radiation post-processing in PIC codes , 2009, Optics + Optoelectronics.

[7]  J.-L. Vay Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Simulation of beams or plasmas crossing at relaticistic velocity Permalink , 2008 .

[8]  R. Fonseca,et al.  Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator. , 2009, Physical review letters.

[9]  M. Begelman,et al.  Plasma astrophysics. , 1993, Science.

[10]  A. Schawlow Lasers , 2018, Acta Ophthalmologica.

[11]  S. F. Martins,et al.  ION DYNAMICS AND ACCELERATION IN RELATIVISTIC SHOCKS , 2009, 0903.3573.

[12]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[13]  C. Wahlström,et al.  Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. , 2006, Physical review letters.

[14]  S R Nagel,et al.  Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. , 2009, Physical review letters.

[15]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[16]  F. S. Tsung,et al.  One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations , 2008, 0810.2460.

[17]  Alexander Pukhov,et al.  Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons , 2004 .

[18]  John W. Luginsland,et al.  On the elimination of numerical Cerenkov radiation in PIC simulations , 2004 .

[19]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[20]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[21]  W. M. Fawley,et al.  Use of the Lorentz‐Boosted Frame Transformation to Simulate Free‐Electron Laser Amplifier Physics , 2008 .

[22]  Erik Lefebvre,et al.  Particle-in-Cell modelling of laser-plasma interaction using Fourier decomposition , 2009, J. Comput. Phys..

[23]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[24]  T. M. Antonsen,et al.  QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas , 2006, J. Comput. Phys..

[25]  J. Vay,et al.  Noninvariance of space- and time-scale ranges under a Lorentz Transformation and the implications for the study of relativistic interactions. , 2007, Physical review letters.

[26]  R. Fonseca,et al.  Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel. , 2004, Physical review letters.