The Phi-Calculus: A Language for Distributed Control of Reconfigurable Embedded Systems

The Φ-calculus extends Milner's π-calculus by adding active environments which flow continuously over time. This allows us to extend hybrid automata to specify systems of physical agents which can reconfigure themselves. We prove a theorem stating that processes (weakly) bisimilar in the process-algebraic sense, when placed in the same active environment, control it in the same way.

[1]  Steve A. Schneider,et al.  Concurrent and Real-time Systems: The CSP Approach , 1999 .

[2]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[3]  Thomas A. Henzinger,et al.  Reactive Modules , 1999, Formal Methods Syst. Des..

[4]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[5]  Roberto Segala A process algebraic view of I/O automata , 1992 .

[6]  Luca Cardelli,et al.  A Spatial Logic for Concurrency , 2001, TACS.

[7]  Akash Deshpande,et al.  The SHIFT Programming Language and Run-time System for Dynamic Networks of Hybrid Automata , 1997 .

[8]  Thomas A. Henzinger,et al.  Assume-Guarantee Reasoning for Hierarchical Hybrid Systems , 2001, HSCC.

[9]  Luca Cardelli,et al.  A spatial logic for concurrency (part I) , 2003, Inf. Comput..

[10]  Luca Cardelli,et al.  A Spatial Logic for Concurrency (Part II) , 2002, CONCUR.

[11]  Nancy A. Lynch,et al.  Hierarchical correctness proofs for distributed algorithms , 1987, PODC '87.

[12]  Eric Klavins,et al.  Automatic Compilation of Concurrent Hybrid Factories from Product Assembly Specifications , 2000, HSCC.

[13]  Insup Lee,et al.  Compositional Refinement for Hierarchical Hybrid Systems , 2001, HSCC.

[14]  Nancy A. Lynch,et al.  Hybrid I/O Automata Revisited , 2001, HSCC.

[15]  T. Henzinger The theory of hybrid automata , 1996, LICS 1996.

[16]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[17]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[18]  Daniel E. Koditschek,et al.  A Formalism for the Composition of Loosely Coupled Robot Behaviors , 1999 .